

Abstract

Metal-Organic frameworks (MOFs) known for their high porosity and structural tunability, are promising for gas storage, separations, and catalysis applications. The experimental Cambridge Structural Database (CSD) or other ready-to-use structural databases (e.g. CoRE-MOFs, ARCMOF) facilitates property characterization through molecular simulations, covering adsorption, thermal, mechanical, and electronic properties. However, simulation tools often require advanced expertise, and although many computational codes are accessible, they remain time-consuming and challenging for non-expert users. The DIAMOND project (PEPR DIADEM) promotes FAIR data practices with reproducible, user-friendly workflows using workflow managers (e.g. AiiDA) and containerization. We present such an easy-to-use pipeline for simulating adsorption properties of polar gases (e.g., N₂, CO₂) in MOFs, streamlining advanced analyses across An Andre Arg-- $\Delta x \Delta y \Delta z$ platforms. MC Moves µ,V,T fixed 100 . A FAIR workflow Data explorer CAMTET01 OQOBUT OQOCAA PIBZUY Simulation runner Select Structure Input generator Data manager Select Charge methods: A python workflow using input/output **JSON files** JSON Form GUI nced Configurations Select Molecule Name:

simp	le-ads	sorpti	on-w	orkfl	WO

- User-friendly interfaces
- Tested on Gricad/dahu and Idris/Jean-zay HPC
- single CPU simulations

1 / / ·

- parallelization on materials/conditions/properties
- Inputs from structural databases (Core MOF 2019)
- A fully **containerized** package

)	apptainer	run	simple-adsorption-workflow.sif	
)	***			
)	• • •			

input
run
merge
plot

A

	rarameters	Huvan
L	Structu	ires
	1499489-acs ABAVIJ ABAYIO ABAYOU ABEFUL ABEFUL ABESUX	.cgd.6
L	Adsorbe	ed G
l	Cs N2 O2 CO2 CH4 water	
L	Pressu	re:
I	Min: Max: Steps:	10 100 5
L	Tempera	atur
I	note : sepa 298.15,320	rate w
L	Charge	Met
	EQeq None	

Add input keywords from individual codes		
COUES	40 - 35 - 30 -	CPUs Used Over Time
 Screening requirements user warnings internal scheduler other MOF databases 	25 - 20 - 50 15 - 10 - 5 - 0 -	100 200 <u>300</u> 44

Supervision Technical support Other projects engine François-Xavier Coudert, Noel Jakse **Pierre-Antoine Bouttier** Akshay Krishna Ammothum Kandy, Cinthya Herrera, Jonathan Daubin

MOFLearning : Streamlined Simulation Workflows for Gas Adsorption in Metal-Organic Frameworks

¹ **IRCP**, Université Paris Sciences Lettres (PSL) - Chimie ParisTech ² **SIMAP**, Université Grenoble Alpes (UGA) - Grenoble INP - CNRS

Merge "parameters": GCMC adsorption geometric properties structure":["MIBQAR","VOGTI molecule_name": ["N2", "CO pressure": [10,1E6], npoints":5. temperature": [298.15] defaults" unit_cells":[1,1,1], forcefield":"GenericMOFs "init_cycles":10, "cycles":20, "print_every":5 JSON input

A. Hardiagon¹, J.P. Almeida de Mendonça², B. Arrondeau³, D. Bissuel⁴, D. Martin-Calle⁴

³**GRICAD**, Université Grenoble Alpes (UGA) - CNRS ⁴**ILM**, Université Claude Bernard Lyon 1 - CNRS

Accelerated Design

