Development of a general MLIP workflow for reactive, "green" designer solvents

CECAM workshop: MLIPs and Accessible Databases, Day 2

Julia Yang

Harvard University *Center for the Environment*

Georgia Institute of Technology

School of Chemical and Biomolecular Engineering

Promising "green" designer solvents are not simple mixtures

Smith, E.L., Abbott, A.P., and Ryder, K.S., *Chemical Reviews* **114**(21), 11060-11082 (2014).

Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity-Important Limitations of DESs as Sustainable Materials

 $\mathbf Q$

Read Online

Mateusz Marchel, Hubert Cieśliński, and Grzegorz Boczkaj*

Cite This: Ind. Eng. Chem. Res. 2022, 61, 11288-11300

What is the long-term thermal stability of ethaline?

Ethaline undergoes decomposition already at room temperature

(c) Tentatively identified compounds (TIC) of ethaline

What controls decomposition in ethaline and what are design principles for thermodynamically stable solvents?

Need: **Reactive force field for organic liquids**

In modeling ethaline: Benchmarked *ab initio* studies are missing

What is correction, α , need in ethaline to remove artificial charge transfer?

From DFT to MLIP: The developed workflow

Benchmarking exact exchange correction

Benchmarking exact exchange correction

Benchmarking exact exchange correction

Does the correction work for charge transfer in ethaline?

Clear reproduction of charge transfer in PBE68-D3 compared to CCSD(T).

Does the correction work for IPs in ethaline?

Yes:

- \checkmark Oxidation is localized
- \checkmark Cl is oxidized first, contrary to what others have assumed [1]
- \checkmark IP is configuration dependent [2]

^[1] Wang, S., Zhang, Z., Lu, Z., and Xu, Z. *Green Chem.* **22**, 4473-4482, (2020) [2] Fadel, E.R., Faglioni, F., Samsonidze, G. *et al.*, *Nat Commun.* **10**, 3360, (2019).

Does the correction work for the S_N^2 reaction barrier?

Decomposition products

Climbing-Image NEB in vacuum

Hirshfeld charges

Gas-phase S_N2 reaction predicts > 1.5 eV barrier

- **Missing** considerations: Solvation shell
	- **Hydrogen** bonding

From DFT to MLIP: The developed workflow

Intra- and inter-molecular sampling

Active learning using **FLARE**

Initialize configurations

\bullet **AIMD with hybrid DFT** ✅ **Active learning with hybrid DFT**

Active learning using **FLARE**

Initialize configurations

\bullet **AIMD with hybrid DFT** ✅ **Active learning with hybrid DFT**

Frame number (simulation time: 0.165 ps)

Advantage #1: Active learning continuously explores TD landscape, sampling bond lengths representative of those of classical FF at higher temperatures.

Active learning for intramolecular diversity

Advantage #2: Workflow can also sample around transition states.

What about intermolecular diversity?

From DFT to MLIP: The developed workflow

[1] Musaelian, A., Batzner, S., Johansson, A. *et al. Nat Commun* **14**, 579 (2023). [2] Goodwin, Z. A. H. *et al,* J. Phys. Chem. Lett. **15**, 7539-7547 (2024).

MLIP-0 almost immediately begins to react

Unphysical reactions predicted after a few picoseconds. Retrain potential using frames prior to and during the unphysical reactions (generating MLIP-1).

MLIP-1 no longer predicts unphysical reactions

System energies agree with DFT < 5 meV/atom and no characteristic drops of 50 meV/atom are observed during equilibration and production.

From DFT to MLIP: The developed workflow

MLIP-1 Minimum Energy Pathway deviates from DFT

Reaction coordinate

Deviation in the MEP is due to the generation of a new intermediate species.

Retraining with explicit reaction pathways

MLIP-2 test errors

Decomposition products are further stabilized by solvent

Partially reacted solvent vs. neat solvent (2 ns)

Nonpolar products rearrange and form new solvation environments, **~1 eV lower** in energy than MEP end states.

Solvation rearrangements during charge transfer should be considered.

Another perspective: Solvent relaxation in ethaline **drives intramolecular charge transfer** Intramolecular

Alfurayj, I., Fraenza, C. C., Zhang, Y., Pandian, R. *et al, J. Phys Chem B*, **125**, 8888–8901, (2021).

H-bonding and solvation rearrangement lower reaction barrier

H-bonding and solvation rearrangement lower reaction barrier

- Solvation shell dynamics (**~1 eV stabilization of products**)
- Hydrogen bonding dynamics (±**200-600 meV fluctuations**)

What about Umbrella Sampling-MLIP?

MLIP-2 is stable but predicts **isolated N formation** instead of transferring the methyl group

Explicit solvent not shown

Conclusions & Acknowledgements

- Chemical decomposition in organic solvents can be studied using the general workflow developed here.
	- 1. Hybrid DFT with a sufficiently-large (>0.3) exact exchange enables the study of charge transfer to CCSD(T) accuracy.
	- 2. Iterative training is essential for reproducing thermodynamically and kinetically consistent results with DFT.
	- 3. Some characteristic failures of MLIP:
		- a. Artificially decreasing energy during equilibration (A drop of ~50 meV/atom indicates broken bonds)
		- b. Under-prediction of reaction barriers.
- When reactions change polarity, solvation equilibration may be important.
- Simulations reveal dynamic H-bonding in green solvents "flattens" the PES, in this case by holding Cl near reaction sites, initiating the reaction.

Dr. Whai Shin Amanda Ooi, Columbia

Dr. Zachary A. H. Goodwin, Harvard

Dean Ah-Hyung Alissa Park, Columbia/UCLA

Prof. Boris

HARVARD UNIVERSITY A Center of the Salata Institut

Prof. Boris Funding: HUCE and
Kozinsky, Harvard Georgia Tech Georgia Tech