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Promising “green” designer solvents are not simple mixtures
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What is the long-term thermal stability of
ethaline?




Ethaline undergoes decomposition already at room temperature

(@) Synthesis of ethaline (60 °C, 4 hour) (b) Isothermal TGA of ethaline (60 °C, 4 hour)
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In modeling ethaline: Benchmarked ab initio studies are missing

Exc =Ec+ (1 —a)Expcar + aE)?F
At least 30% exchange

12 —— 400 K AIMD
10 —— 400 K CMD
8- DFTB3/PBE-D3
5 6l 0% exchange
4
5
1 (b)
0
r [A] Grimme, S., Hujo, W., Kirchner, B., Phys. Chem. Chem.
Spittle, S., Poe, D., Doherty, B. et al. Phys. 14, 4875-4883 (2012).

Nat. Commun. 13, 219 (2022).

What is correction, a, need in ethaline to remove artificial charge transfer?
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From DFT to MLIP: The developed workflow
DFT approach  £Pg¢ b
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Benchmarking exact exchange correction

Ethylene glycol molecule lonization potential (eV)

CCSD(T) IP, NIST structure 10.59 (plotted)
(experiments: 10.21-10.55)
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Benchmarking exact exchange correction

CCSD(T) IP, NIST structure 10.59 (plotted) y
(experiments: 10.21-10.55) 03
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Benchmarking exact exchange correction

CCSD(T) IP, NIST structure 10.59 (plotted)
(experiments: 10.21-10.55)
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Does the correction work for charge transfer in ethaline?

PBEG68-D3 charges

PBEG68-D3 vs. R2SCAN charges vs.
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Clear reproduction of charge transfer in PBE68-D3 compared to CCSD(T).




lonization potential (IP) for cutouts from AIMD
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Does the correction work for IPs in ethaline?

Yes:

v" Oxidation is localized

v" Cl is oxidized first,
contrary to what others

have assumed [1]

v IP is configuration
dependent [2]




Does the correction work for the S\2 reaction barrier?

Decomposition products  Climbing-lmage NEB in vacuum Hirshfeld charges
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Gas-phase Sy2 reaction predicts > 1.5 eV barrier
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From DFT to MLIP: The developed workflow
DFT approach  £Pg¢ b
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Active learning using

© AIMD with hybrid DFT

Initialize configurations
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Active learning using FLARE

Initialize configurations
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Active learning for intramolecular diversity

Freq.

Molecules are mostly connected _
according to SMILES Connected molecules have a wide
800 range of bond lengths (example: OH)
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Advantage #1: Active learning continuously explores TD landscape, sampling

bond lengths representative of those of classical FF at higher temperatures.




Active learning for intramolecular diversity
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Advantage #2: Workflow can also sample around transition states.




What about intermolecular diversity?

Radial distribution function comparison
of FLARE vs. OPLS structures
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Solution: Circumvent time-scale limitations of FLARE with classical force fields
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From DFT to MLIP: The developed workf

DFT approach
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L,
MLIP parameters, iteration 0 (MLIP-0)

5 FLARE MLIP-0 test errors
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s
MLIP-0 almost immediately begins to react

Simulation time (ps)
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Unphysical reactions predicted after a few picoseconds. Retrain potential using frames
prior to and during the unphysical reactions (generating MLIP-1).
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MLIP-1 no longer predicts unphysical reactions

-111.256
-111.258

-111.26
-111.262
-111.264
-111.266
-111.268

-111.27
-111.272
-111.274
-111.276

Energy (eV/atom)

|

|

/

Production time (ns)

0.5
MLIP-1

\

/.A
| \'ti\
V

|

b
k

/
PBEG68-D3

Max error: 4.5 meV/atom
RMSE: 2.3 meV/atom

B
\f '

* Q’ll \'/ \JI\\ Il\']'
V

16
" CMD @ 298K ———
14 CMD @ 400K ——
Allegro @ 298 K
10 | .
S er .
6 = =
4r Ethaline |
2 = -
0 - | | |
0 2 4 6 8 10
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System energies agree with DFT < 5 meV/atom and no characteristic drops
of 50 meV/atom are observed during equilibration and production.




From DFT to MLIP: The developed workflow

DFT approach EFEK G’RC\A‘; Active learning for sampling H_m[
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MLIP-1 Minimum Energy Pathway deviates from DFT
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Deviation in the MEP is due to the generation of a new intermediate species.
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Retraining with explicit reaction pathways

MLIP-2 test errors
« 5FLARE runs :
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MLIP-2 exhibits improved reaction barriers
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Decomposition products are further stabilized by solvent

Energy (eV/atom)
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Nonpolar products rearrange and form new solvation environments,
~1 eV lower in energy than MEP end states.




Reason for stabilization: Solvation environments change

ClI (further) Cl (nearby) Reacted CI
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Solvation rearrangements during charge transfer should be considered.
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Another perspective: Solvent relaxation in ethaline drives

intramolecular charge transfer
Intramolecular

charge transfer in
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Alfurayj, ., Fraenza, C. C., Zhang, Y., Pandian, R. et al, J. Phys Chem B, 125 8888-8901, (2021).
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H-bonding and solvation rearrangement lower reaction barrier

MEP comparison with solvation effects o DET :
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H-bonding and solvation rearrangement lower reaction barrier

Potential energy (eV)
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What about Umbrella Sampling-MLIP?

Transfer of CH3
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MLIP-2 is stable but predicts
isolated N formation instead of

transferring the methyl group

Explicit solvent not shown




Conclusions & Acknowledgements

» Chemical decomposition in organic solvents can be studied using the
general workflow developed here.
1. Hybrid DFT with a sufficiently-large (>0.3) exact exchange enables
the study of charge transfer to CCSD(T) accuracy.
2. lterative training is essential for reproducing thermodynamically and
kinetically consistent results with DFT.
3. Some characteristic failures of MLIP:

a. Atrtificially decreasing energy during equilibration
(A drop of ~50 meV/atom indicates broken bonds)
b. Under-prediction of reaction barriers.
When reactions change polarity, solvation equilibration may be important.
Simulations reveal dynamic H-bonding in green solvents “flattens” the PES,
in this case by holding Cl near reaction sites, initiating the reaction.
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