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As a result, the usage of MLIPs has 
increased exponentially in the last few years 

[G. Wang et al., iScience 27, 109673 (2024)]



Many papers were indeed first dedicated 
to the development of the MLIPs (descriptors and models)

[F. Musil et al., Chem. Rev. 121, 9759 (2021)]



Another key component of MLIPs is the data collection 
for training the potentials and for their transferability

[G. Wang et al., iScience 27, 109673 (2024)]

achieves satisfactory performance, it can be deployed in a production environment for real-time predictions or decision-making. It is

essential to have a well-designed deployment strategy that ensures scalability, fault tolerance, andmonitoring of the deployedmodel’s

performance over time.

DATA COLLECTION OF MACHINE LEARNING INTERATOMIC POTENTIALS

Datasets are fundamental to machine learning, providing the raw material from which algorithms learn and derive insights.109–111 Diverse

datasets help in building robust models that can generalize well across different scenarios, reducing biases and improving the accuracy of

predictions. In materials science, collecting comprehensive datasets through various methods is vital for exploring the entire spectrum of

material properties and behaviors.112–116 This extensive data collection enables the identification of novel materials with desired character-

istics, supports the understanding of complex material interactions, and facilitates the prediction of material performance under different

conditions. In this part, we introduce some possible data collection methods for training MLIPs.

! Open-source material databases: the concepts of materials genomics have led to the creation of numerous large-scale materials

databases globally, such as ICSD,117 Materials Project,118 Aflow,119 Materials Cloud,120 NOMAD,121 ALKEMIE MatterDB,122–124

OQMAD,125 COD,126 OMD,127 C2DB,128 MatNavi,129 among others. These databases provide a wealth of data obtained fromDFT cal-

culations, which typically require extensive computational resources. Therefore, efficiently filtering and selecting target materials from

these open-source databases presents a highly effectivemethod for gathering relevant data for MLIPs without the need for time-inten-

sive DFT calculations.130–133

! Ab Initio Molecular Dynamics (AIMD) Sampling: AIMD simulations to explore the configurational space. The temperature of the simu-

lation determines the regions of the potential energy surface (PES) and energy ranges explored. This technique is suitable for equilib-

rium or near-equilibrium properties, such as studying vibrational spectra or thermodynamic properties.
! Adaptive Sampling or On-the-Fly ML: this technique starts with a small initial set of reference data to train a preliminary ML potential,

which is then used inMD simulations.134 Additional conformations are collectedwhenmodel predictions become unreliable, based on

an uncertainty criterion, and reference calculations are performed.135,136

! Meta dynamics Sampling: similar to adaptive sampling, this method uses preliminary ML potentials in MD simulations but biases

the dynamics to visit unexplored regions on the PES.137–139 It combines metadynamics with uncertainty estimates to select relevant

structures.
! Normal Mode Sampling: this approach does not require MD simulations. It starts from a minimum on the PES and generates distorted

structures by displacing atoms along normal modes. It is efficient for exploring PES but is limited to regions close to minima and is best

combined with other sampling methods.

After collecting data, it is crucial to clean data by feature engineering, including removing inconsistencies, addressingmissing values, and

filtering out irrelevant information.140–144 Subsequently, data splitting segregates the refined dataset into training, validation, and test sets,

which are used to assess the model’s generalization capability while mitigating the risk of overfitting. Concurrently, data standardization and

normalization emerge as pivotal steps in preprocessing. Specifically, standardization is the best method to rescale the data to yield a mean of

zero and a standard deviation of one, effectively resolving issues arising from differing scales among features. Normalization, often achieved

Figure 2. The flowchart and four essential stages of MLIPs
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From that standpoint, efforts like ColaFit are crucial

[J.A. Vita et al., J. Chem. Phys. 159, 154802 (2023)]



More generally sharing datasets is very useful...

[B. Deng et al., Nat. Mach. Intel. 5, 1031 (2023)]
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elements, the MPtrj Dataset provides comprehensive coverage of all 
chemistries, excluding only the noble gases and actinoids. The lower 
boxes in Fig. 2 present the counts and mean absolute deviations of 
energy, force, stress and magmoms in the MPtrj Dataset.

Performance evaluation
CHGNet with 400,438 trainable parameters was trained on the MPtrj 
Dataset with an 8:1:1 training, validation and test set ratio, partitioned 
by materials (Methods). Without training on magmom, we achieved 
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Fig. 1 | CHGNet model architecture. a, CHGNet workflow: a crystal structure 
with unknown atomic charge is used as input to predict the energy, force, stress 
and magmoms, resulting in a charge-decorated structure. b, Atom graph: the 
pairwise bond information is drawn between atoms. Bond graph: the pairwise 
angle information is drawn between bonds. c, Graphs run through basis 
expansions and embedding layers to create atom, bond and angle features.  

The features are updated through several interaction blocks, and the properties 
are predicted at output layers, where FC denotes a nonlinear fully connected 
layer. d, Interaction block in which the atom, bond and angle share and update 
information. e, Atom convolution layer where neighbouring atom and bond 
information is calculated through weighted message passing and aggregates to 
the atoms.
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More generally sharing datasets is very useful...

OQMD

[C.W. Andersen et al., Sci. Data 8, 217 (2021); M.L. Evans et al., Digital Discovery, 2024, DOI: 10.1039/D4DD00039K]



Users are now able to search 
more materials DBs with the same query…

• simple query on Group 14 compounds (1): 
/v1/structures?filter=elements HAS ANY "C", "Si", "Ge", "Sn", "Pb" 

• with a focus on binary materials (2): 
/v1/structures?filter=elements HAS ANY "C", "Si", "Ge", "Sn", "Pb" AND nelements=2 

• with a focus on ternary materials without Pb (3): 
/v1/structures?filter=elements HAS ANY "C", "Si", "Ge", "Sn" AND NOT elements  HAS "Pb" 
AND elements LENGTH 3



Then, universal MLIPs started to appear...



M3GNet

https://github.com/materialsvirtuallab/m3gnet



CHGNet (Crystal Hamiltonian Graph neural Network)

https://github.com/CederGroupHub/chgnet
https://chgnet.lbl.gov/



ALIGNN (Atomistic Line Graph Neural Network)

https://github.com/usnistgov/alignn



MACE-MP-0

arXiv:2401.00096v2
https://github.com/ACEsuit/mace-mp



TeaNet



GNoME (Graph Networks for Materials Exploration)

https://github.com/google-deepmind/materials_discovery



MatterSim

arXiv:2405.04967v2



SevenNet (Scalable EquiVariance Enabled Neural Network)

https://github.com/MDIL-SNU/SevenNet



Orbital Materials - Pretrained models for atomic simulations

https://github.com/orbital-materials/orb-models



Matbench-Discovery

https://matbench-discovery.materialsproject.org/



There clearly was a need for some assessment...

Breakpoint Test

Endurance Test
Load Test

Stress Test

Spike Test

Test time

Test Intensity



Test #1: Equation of state

• Validation against all-electron results for elemental crystals 5

Figure 3. Graphical representation of the � gauge, which
expresses the difference between two codes in terms of their
equations of state. The black line depicts the quadratic en-
ergy difference between both curves, and �i corresponds
to the root-means-square average. This is demonstrated by
the shaded area, which is equally large above and below the
�2

i line.

A comparison of �i values allows the expression
of EOS differences as a single number, and a small
�i automatically implies small deviations between
equilibrium volumes, bulk moduli or any other EOS-
derived observables as well. The overall difference �
between methods a and b is obtained by averaging �i

over all 71 crystals in the benchmark set. Alternative
definitions of � have recently appeared as well,27,28

and essentially render the same information (see Sup-
plementary Material). In this work, we apply the
original � protocol to 40 DFT implementations of
the PBE functional.52 Appropriate numerical settings
were determined for each method separately, ensur-
ing converged results. All calculations were treated
on a scalar-relativistic level, as not all codes support
spin-orbit coupling. This is not a limitation, as the
aim is to compare codes to each other rather than to
experiment. We do not elaborate much on speed and
memory requirements, for which we refer to the doc-
umentation of the respective codes.

Figure 4 presents an overview of the most im-
portant � values categorized into all-electron, PAW,
ultrasoft pseudopotential and norm-conserving pseu-
dopotential methods. Approaches with a similar in-
trinsic precision are in this way clustered together.
Both the full results and the most important numer-
ical settings have been included in the Supplemen-
tary Material. A complete specification would have
to include code defaults and hard-coded values, so a

Figure 4. Comparison of all-electron (AE), PAW, ultra-
soft (USPP) and norm-conserving pseudopotential codes
(NCPP) to all-electron results, expressed in terms of � (in
meV/atom) and listed in alphabetical order per category.
The tags stand for code, code/specification (AE)
or potential set/code (PAW/USPP/NCPP), and are
specified in full in the Supplementary Material. The
colour code ranges from green over yellow to red (small
to large � values). The mixed potential set SSSP was
added to the ultrasoft category, in agreement with its preva-
lent potential type. Both the code settings and the DFT-
predicted equation-of-state parameters behind these num-
bers have been included in the Supplementary Material,
as well as a full � matrix for all methods mentioned in this
article.

reasonable compromise was chosen. A full specifica-
tion could be realized by recent endeavours towards
full-output databases53,54 or workflow scripting,55,56

but this is not yet available for several of the codes
treated here. We have however tried to provide gen-
eration scripts for as many methods as possible, and

4

and their effect on valence transferred unaltered to
the crystal, or be relaxed self-consistently in the full
crystal field. They can moreover be treated using a
relativistic Hamiltonian, essential for core electrons
in heavy atoms. Different scalar-relativistic schemes
may lead to differences in the predicted E(V ) curves.

To stitch together a complete solution, the wave
functions of the semi-core and valence electrons
(2s 2p and 3s 3p, respectively, in the case of silicon)
must be constructed to include the effect of orthog-
onality to the core electrons in the reference atomic
configuration. This central problem can be solved in a
number of different ways depending on the choice of
numerical method. For methods based on plane-wave
expansions or uniform real-space grids, the oscilla-
tory behaviour cannot be accurately represented due
to the limited spatial resolution. The need for unman-
ageably large basis sets can be mitigated by adding a
carefully designed repulsive part to the Kohn-Sham
potential, a so-called pseudopotential. This pseu-
dopotential affects only a small region around the
nuclei (grey zones in Figure 2) and may conserve
the core-region charge (norm-conserving pseudopo-
tentials40,41), giving rise to an analytically straight-

Figure 2. Electronic states in solid silicon. The valence
states are delocalized over the solid (green line), as the wave
functions overlap from one atom to the next. The lowest-
energy 1s state (red) is at an energy two orders of magni-
tude lower than the valence states, and is strongly local-
ized near the nucleus with no overlap between the atoms.
The grey regions around the atoms indicate approximately
where the wavefunction, density and potential are smoothed
in pseudized methods.

forward formalism, or break norm conservation by
including a compensating augmentation charge (ul-
trasoft pseudopotentials42), allowing for smoother
wavefunctions and hence smaller basis sets. Alter-
natively, the projector-augmented wave (PAW) ap-
proach defines an explicit transformation between the
all-electron and pseudopotential wavefunctions using
additional partial-wave basis functions.43,44 This al-
lows PAW codes to obtain good precision for small
numbers of plane waves or large grid spacings, but
choosing suitable partial-wave projectors is not triv-
ial. We will refer to both pseudopotential and PAW
methods as pseudization approaches. In contrast,
all-electron methods explicitly construct basis func-
tions that are restricted to a specific energy range
((L)APW,45–48 LMTO49), or treat core and valence
states on equal footing, e.g., by using numerical
atomic-like orbitals.50,51 Dealing with the full poten-
tial enables better precision, but inevitably increases
the computation time. In these codes, the complex-
ity of solving the Kohn-Sham problem shifts from the
potential to the choice of the basis functions. Similar
to pseudization approaches, these choices lead to a
variety of methods which, despite solving the same
Kohn-Sham equations, differ in many other details.

The � matrix
The case study for silicon (Figure 1) demonstrates
that different approaches to the potential or basis
functions may lead to noticeably varying predictions,
even for straightforward properties like the lattice
constant. There is no absolute reference to com-
pare these methods against, as each approach has
its own intricacies and approximations. To deter-
mine whether the same results can be obtained irre-
spective of the code or (pseudo)potential, we instead
present a large-scale, pair-wise code comparison us-
ing the � gauge. This criterion was formulated by
Lejaeghere et al.26 to quantify differences between
DFT-predicted E(V ) profiles in an unequivocal way.
They proposed a benchmark set of 71 elemental crys-
tals and defined for every element i the quantity �i

as the root-mean-square difference between the equa-
tions of state of methods a and b over a ±6% interval
around the equilibrium volume V0,i. The calculated
equations of state are lined up with respect to their
minimum energy and compared in an interval sym-
metrical around the average equilibrium volume (see
Figure 3):

�i(a, b) =

vuuuut

1.06V0,iR

0.94V0,i

(Eb,i(V )� Ea,i(V ))2 dV

0.12V0,i

(1)

[K. Lejaeghere et al., Science 351, aad3000 (2016)]



Test #1: Equation of state

• Validation against all-electron results for 4 elemental and 6 oxide crystals

[E. Bosoni et al., Nat. Rev. Phys. 6, 45 (2024)]

(a) FCC crystal (conventional cell). (b) BCC crystal (conventional cell).

(c) SC crystal (conventional cell). (d) Diamond crystal (conventional cell).

Figure S1.1. Conventional cells of the 4 unary prototypes used in this work. Images generated using XCrysDen3.

(a) X2O crystal (conventional cell). (b) XO crystal (conventional cell). (c) X2O3 crystal (conventional cell).

(d) XO2 crystal (conventional cell). (e) X2O5 crystal (conventional cell). (f) XO3 crystal (conventional cell).

Figure S1.2. Conventional cells of the 6 oxide prototypes used in this work. Oxygen atoms are represented as red atoms,
while X atoms as gold atoms. Images generated using XCrysDen3.
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Test #1: Equation of state

• Validation against all-electron results for 4 elemental and 6 oxide crystals 

•With 2 new metrics: 
◆ a revised version of the Δ-factor 

◆ a metric dependent on the physically measurable quantities V0, B0, and B1

[E. Bosoni et al., Nat. Rev. Phys. 6, 45 (2024)]

ϵ(a, b) =
∑i [Ea(Vi) − Eb(Vi)]2

∑i [Ea(Vi) − ⟨Ea⟩]2 ∑i [Eb(Vi) − ⟨Eb⟩]2

νwV0,wB0,wB1
(a, b) = 100 ∑

Y=V0,B0,B1
[wY

Ya − Yb

(Ya + Yb)/2 ]
2



Test #1: Equation of state

• Validation against all-electron results for 4 elemental and 6 oxide crystals

[E. Bosoni et al., Nat. Rev. Phys. 6, 45 (2024)]

S9 Detailed results for all computational approaches
In this section, we report the comparison of each of the computational approaches considered in the main text with the average
all-electron reference dataset, using both metrics e and n . For each metric, the same colorbar is used for all approaches, based
upon the ranges of agreement identified in SI Sec. S7 (in addition, the ratio of the threshold values for e and n is in agreement
with their approximate linear relationship, see SI Sec. S8):

• “excellent agreement” (e  0.06, n  0.10): a very dark shade of blue (not evolving very much over this narrow interval);

• “good agreement” (0.06 < e  0.20, 0.10 < n  0.33): color evolving from a dark shade of blue to yellow as the values
of e or n increase;

• threshold for good agreement (e = 0.20, n = 0.33): yellow;

• “noticeably different” (0.20 < e  1.0, 0.33 < n  1.65): color evolving from yellow to red as the values of e or n
increase;

• “clearly different” (e > 1.0, n > 1.65): one uniform darker shade of red, regardless of the value.

Crystals that were not computed are left in white. The caption of every plot mentions the number of crystals belonging to each
of these categories. The results for all the codes are shown in SI Figs. S9.1 to S9.11.

Figure S9.1. Value of the comparison metrics e (top) and n (bottom) for ABINIT@PW|PseudoDojo-v0.5 with respect
to the average all-electron reference dataset. Left panels: unaries; right panels: oxides. 720 out of 960 crystals were calculated.
The number of crystals that land in the excellent, good, noticeably different, and clearly different agreement ranges for the e
metric are 232, 377, 111, 0, respectively. For the n metric, they are 244, 378, 98, 0, respectively.

38/71



Test #1: Equation of state

• Validation against all-electron results for 4 elemental and 6 oxide crystals

[E. Bosoni et al., Nat. Rev. Phys. 6, 45 (2024)]
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Test #1: Equation of state

• The results for uMLIPs are not fantastic!

[H. Yu et al., MGE Adv. 2, e58 (2024)]

I. EQUATION OF STATE AND COMPARISON WITH ALL-ELECTRON RE-

SULTS

Figs. 1, 2, 3, 4 show the comparison metrics ε and ν with respect to the all-electron

reference values for unaries and oxides. White boxes denote systems for which it was not

possible to obtain a physical fit of the energies versus volume, for instance no minimum

could be found or python exceptions are raised at runtime. In Ref. [1], two EOS curves

are considered to be in excellent (good) agreement if ε ! 0.06 (0.2) or ν ! 0.1 (0.33), and

systems for which ε > 1.0 or ν > 1.65 are considered outliers. To account for the larger
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Test #1: Equation of state

• The results for uMLIPs are not fantastic!
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Test #1: Equation of state

• The results for uMLIPs are not fantastic! 

• However, most structures in the dataset are not stable in nature... 

• This is a very stringent test for uMLIPs. But it indicates that: 
◆ their predictions should be taken with some caution and, if possible, validated a 

posteriori via ab initio calculations 
◆ it might be appropriate to retrain them by including additional ab initio data 

capturing the chemical/physical configurations under investigation

[H. Yu et al., MGE Adv. 2, e58 (2024)]



Test #2: Structural optimization and formation energy

• Dataset #1 from the Materials Project (19998 unary and binary compounds)

[H. Yu et al., MGE Adv. 2, e58 (2024)]



Test #2: Structural optimization and formation energy

• Dataset #1 from the Materials Project (19998 unary and binary compounds) 
◆ one-shot calculations of the energy (without any relaxation) 
◆ ionic- and cell-relaxations

[H. Yu et al., MGE Adv. 2, e58 (2024)]
CHGNet M3GNet MACE ALIGNN

0

2500

5000

7500

10000

12500

15000

17500

20000

C
o
u
n
ts

19930 19920 19917 19874

78 81 75
3 49

(a)

Converged

Unconverged

Problematic

CHGNet M3GNet MACE ALIGNN

19749 19497 19762 19068

246 501 236 881
3 49(b)

65

ionic-relaxations cell-relaxations



Test #2: Structural optimization and formation energy

• Dataset #1 from the Materials Project (19998 unary and binary compounds) 

•We compute  with one-shot energiesEform[AaBb] = E[AaBb] − xaE[A] − xbE[B]

[H. Yu et al., MGE Adv. 2, e58 (2024)]

(d) ALIGNN(c) MACE

(b) M3GNet(a) CHGNet

ΔEform = EMP
form − EuMLIP

form



Test #2: Structural optimization and formation energy

• Dataset #1 from the Materials Project (19998 unary and binary compounds) 

•We compute  with one-shot energiesEform[AaBb] = E[AaBb] − xaE[A] − xbE[B]

[H. Yu et al., MGE Adv. 2, e58 (2024)]
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uMLIP MAE RMSE R2

CHGNet 0.054 0.105 0.988

M3GNet 0.172 0.316 0.896

MACE 0.044 0.101 0.989

ALIGNN 0.137 0.223 0.947

ΔEform = EMP
form − EuMLIP

form



Test #2: Structural optimization and formation energy

• Dataset #1 from the Materials Project (19998 unary and binary compounds) 

•We compute  for the cell-relaxationsΔrelV = 1 −
VuMLIP

VMP

[H. Yu et al., MGE Adv. 2, e58 (2024)]

uMLIP V a b c α β γ

CHGNet 3.16 2.03 2.07 2.44 0.75 0.62 1.19

M3GNet 2.97 2.04 2.09 2.46 0.89 0.73 1.24

MACE 5.22 2.01 2.11 2.58 0.73 0.59 1.13

ALIGNN 7.85 3.42 3.42 3.61 0.94 0.86 1.32
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Test #2: Structural optimization and formation energy

• Dataset #2 from the Materials Project (100 randomly chosen quinary materials) 

•We perform one-shot and cell-relaxations calculations: 
◆ 4 unconverged cases (4%) for CHGNet and M3GNet 
◆ 2 unconverged cases (2%) for MACE and ALIGNN

[H. Yu et al., MGE Adv. 2, e58 (2024)]

uMLIP MAE RMSE R2

CHGNet 0.048 0.062 0.995

M3GNet 0.462 0.505 0.678

MACE 0.038 0.054 0.996

ALIGNN 0.157 0.185 0.957

ΔEform = EMP
form − EuMLIP

form

uMLIP V a b c α β γ

CHGNet 1.76 1.21 1.12 1.01 0.61 0.31 0.47

M3GNet 3.21 1.15 1.74 1.66 1.63 0.60 0.95

MACE 5.49 1.54 2.57 2.69 1.46 0.48 0.61

ALIGNN 3.74 3.42 3.42 3.61 0.94 0.86 1.32

MARE (%)



Test #3: Phonon band structures

• Dataset #3 from the Materials Project (101 structures with DFPT phonons)

[H. Yu et al., MGE Adv. 2, e58 (2024)]
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Test #3: Phonon band structures

• Dataset #3 from the Materials Project (101 structures with DFPT phonons)

[H. Yu et al., MGE Adv. 2, e58 (2024)]
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Test #4: Surface energy

• Dataset #4 from the Materials Project (1497 different surface structures were 
generated from 138 different bulk systems, 73 different chemical elements)

[B. Focassio et al., ACS Appl. Mater. Interfaces (2024)]

4

FIG. 3. Root mean squared error (RMSE) of the universal interatomic potentials concerning surface chemistry. The upper
triangle is surface energy (ωω

hkl) RMSE, the lower leftmost triangle is the bulk total energy per atom RMSE and the lower
rightmost triangle is the surface total energy per atom RMSE. The numbers in parenthesis are the number of surface structures
evaluated for each chemical element.

with the surface orientation in such case is challenging.
Across the di!erent surface orientations, all UIPs show
slightly similar errors in their prediction. Several cases
of hexagonal systems appear to have a higher error than
cubic ones. However, higher errors are spread across the
di!erent orientations.

3. System local geometries (local environments, beyond

surfaces structures)

Figure 5 shows a kernel PCA (kPCA) map created to
represent each structure and its chemistry accounting for
their local environments. The descriptor used for each
structure is created using MACE’s representation with
the same hyperparameters used for training the universal
model, that is, a radius cuto! of 6.0 Å and three layers
of 128 channels with a maximum angular momentum of
lmax = 2. For each structure, we use a simple average
between the atomic sites, and the comparison between
structures is done by the REMatch kernel [30].

Figure 5 shows the kPCA map colored by the absolute

error given by the MACE model for surface energy. In-
terestingly, the MACE representation is enough to single
out most systems. The representation seems to take great
advantage of the di!erent chemical species within the
dataset. As shown in Fig. 3, osmium (Os) presents most
of the error from MACE. Additionally, in Fig. 5 we also
try to associate the kPCA map with the lattice of each
original bulk structure. We highlight the surfaces that
originate from face-centered cubic (FCC), body-centered
cubic (BCC), and hexagonal closed-packed (HCP) lat-
tices. The error is not directly dependent on the lattice
symmetry. Detailed analysis of each system chemistry on
the kPCA map is available in the Supporting Informa-
tion.

D. Comparison: universal vs specialized MLIPs

1. Universal vs NequIP/MTP

Our next step in this assessment is to address the ques-
tion: “If one is interested in materials’ surfaces, are uni-



Test #5: Thermal conductivity

[B. Póta et al., arXiv:2408.00755v3]

SRD[κ] = 2
κuMLIP − κDFT

κuMLIP + κDFT

Note: They show how to achieve first-principles accuracy through foundational model fine-tuning



Main conclusions of the tests

• "Among the considered uMLIPs, we find that MACE shows superior accuracy in 
predicting formation energies and vibrational properties, and CHGNet and M3GNet 
are outstanding for relaxed geometry predictions." 
[H. Yu et al., MGE Adv. 2, e58 (2024)]   

• "From our results for surface energies, we see that the total energies for surface 
geometries are modestly accurate, however, not good enough for specific properties." 
[B. Focassio et al., ACS Appl. Mater. Interfaces (2024)] 

• There is still a need for further optimization and training of the currently available 
uMLIPs to fully exploit the capability of ML techniques across a broader range of 
applications.



Possible use cases

• Sampling of the potential energy surface 

• Accelerating ab initio relaxations
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Approximate Hessian for accelerating ab initio structure relaxation by force fitting
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We present a method to approximate the Hessian matrix of the Born-Oppenheimer energy landscape by using
a simple force field model whose parameters are fitted to on-the-flight ab-initio results. The inversed Hessian
matrix is used as the preconditioner of conjugate gradient algorithms to speed up the atomic structure relaxation,
resulting in a speedup factor of 2 to 5 on systems of bulk, slab, sheets, and atomic clusters. Because the force
field model employed is simple and general, the parameter fitting is straightforward; the method is applicable to
a variety of complicated systems for minimum structure relaxation. In the metal cluster new structure search, the
new method yields better structures than the one obtained before with conventional algorithms.
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I. INTRODUCTION

In recent years, ab initio calculation has gained tremen-
dous popularity in material research due to the advance of
supercomputer and related methodology developments [1,2].
It has been widely applied to nanoscience, chemistry, and
biology and has achieved successes in the design of new
materials and devices [3,4]. One of the major usages for
density functional theory (DFT) based ab initio calculation
is to search the ground-state atomic structures via atomic
relaxation. Although there are many developments in the
speedup of the electronic self-consistent calculation [5–9], the
algorithms for the structure relaxation are still limited. While it
is straightforward to relax a system with a few atoms, it could
take 100 steps to relax the structure of a 100 atom system, and
the number of steps increases with the size and complexity
of the system. The condition number of the Hessian matrix
for the energy landscape often determines the speed of the
relaxation algorithm [10–12]. In an actual material science
simulation study, the atomic relaxation can be one of the most
time consuming steps.

The conjugate gradient (CG) algorithm [13] is one of the
most commonly used relaxation methods due to its stable
performance [5–8]. However, the CG method can be slow.
The number of relaxation steps scales at least as N1/3 for a
three-dimensional system, with N being the number of atoms.
The speed depends on the eigenvalue spectrum of the second-
order derivative of the energy function (i.e., the Hessian matrix)
around the minimum. When the system complexity increases,
the Hessian may become ill conditioned and the CG relaxation
could become very slow. However, if one knows the Hessian
matrix, the algorithm can be sped up via preconditioning.
Previous studies have proposed methods to model the inverse
Hessian matrix. Zhao et al. [10] have adopted a patching
scheme to construct the Hessian matrix of large quantum dots

*jbli@semi.ac.cn
†lwwang@lbl.gov

by the Hessian matrix of small motifs, which achieves good
performance for large nanocrystals. However, this method is
limited to nanocrystals where most of the atoms reside in a
crystal bulk environment. Fernández-Serra et al. [11] used the
Hessian matrix of the classical force field that considers bond
stretching and bending and showed a relaxation speedup for
the long-wave acoustic mode. Because a valence force field
model is employed, accurate force field parameters must be
provided in advance, which are not always available, especially
in novel systems. Besides, not all systems can be described
by a valence force field model with predetermined bonding
structures. Other techniques [14,15] using internal coordinates
exhibit higher efficiency than Cartesian coordinates for organic
molecules, but they do not address the ill condition problem for
soft acoustic modes, especially for solid systems. Thus, what
is needed is a generalized approach which can be applicable
at least to a large class of problems.

In this paper, we combine the Hessian matrix approximation
with an on-the-flight learning (fitting) procedure [16] to speed
up the atomic relaxation. The on-the-flight learning approach
has been used for ab initio molecular dynamics [16–19], but it
has not been used for atomic relaxation or to approximate the
Hessian matrix. The related hybrid quantum-classical methods
also focus more on molecular dynamics or Monte Carlo
simulation [20–22]. We show that such an approach is also
effective in approximating the Hessian matrix and allows the
use of a rather simple and general force field model. More
specifically, the force field parameters are obtained by fitting
the atomic forces of the force field to the accurate ab initio
forces. The inversed Hessian matrix is calculated by the force
field with fitted parameters and taken as the preconditioner of
the CG algorithm to speed up the atomic relaxation. Due to
the simple form of the employed force field and the accurate
force fitting, the method is general and accurate to various
systems. The usefulness of the method is demonstrated for not
only obtaining a speedup of two to five times for the atomic
relaxation but also yielding new and better structures in a metal
cluster structure search.

1098-0121/2014/89(14)/144110(5) 144110-1 ©2014 American Physical Society



Possible use cases

• Sampling of the potential energy surface 

• Accelerating ab initio relaxations

ionic-relaxations with CHGNet ionic-relaxations with MACE



• Sampling of the potential energy surface 

• Accelerating ab initio relaxations

Possible use cases

cell-relaxations with CHGNet cell-relaxations with MACE



•Many thanks to my collaborators: 
 
 
 
 
 
 
 

• Thank you for your attention
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