UNIVERSITE DE PARIS ECOLE NATIONALE SUPERIEURE DE CHIMIE

Data-based methods to accelerate discovery of novel materials and find new properties in old ones

François-Xavier Coudert

www.coudert.name

Metal-Organic Frameworks

Cristalline, organic–inorganic hybrid nanoporous materials

- **Flexibility of coordination chemistry:** pore geometry and topology
- ☆ Versatility of organic chemistry: pore size and internal surface

- \Rightarrow Applications: gas adsorption, catalysis, sensing, delivery, ...
- ☆ High structural flexibility of their frameworks
- **Important limitation for applications:** hydrothermal & mechanical stability

Metal-Organic Frameworks

- Metals (many) and inorganic blocks (even more) \overleftrightarrow
- Organic linkers... and functionalization \overleftrightarrow
- Multivariate MOFs are possible \overleftrightarrow
- Topology \overleftrightarrow
- Guest molecule... or guests \overleftrightarrow
- **Thermodynamic space: temperature, pressure, composition**

Cristalline, organic–inorganic hybrid nanoporous materials

Why data-based methods?

MOF Papers

23.2K Tweets

MOF Papers @MOF_papers

I'm a bot surveying the metal-organic frameworks (MOF) literature for you! Operated by @fxcoudert, written in open source code

⊘ github.com/fxcoudert/Pape... ☐ Joined April 2014

7,333 Following 12.8K Followers

 \Rightarrow Since this meeting started, 61 MOF papers were tweeted

Figure 4. Most frequent emojis in followers' profiles. National flags were excluded from the analysis.

Coudert, Chem. Mater. 2023

ML methods for chemical sciences

- Property prediction: from structure or from composition
 (supervised learning, data obtained experimentally or computationally)
- **High-throughput screening**: applying predictor at large scale
- * Analysis and exploration of diversity, **clustering of molecules**
- **Generative ML methods**: creating new molecules, new materials
- **Text and data mining**: a lot of information in published literature, in notebooks
- ☆ Al for synthesis prediction: propose a synthesis method/protocal, possibly drive robotic chemistry lab
- ML to improve computational chemistry: using machine learning to design new force fields, new DFT functionals, etc.

☆ ... and many more...

ECOLE NATIONALE SUPERIEURE DE CHIMIE

Can we predict mechanical properties of crystalline materials?

Chimie ParisTech

metamaterials

composite material with a structure that exhibits properties <u>not usually found in</u> natural materials

μετά = beyond

Coudert & Evans, Coord. Chem. Rev. 2019

Meta-MOFs

meta-MOFs

negative thermal expansion negative compressibility negative adsorption breathing chiral induction

Mechanical properties of crystals

☆ In 2016, we identified by chance a zeolite with **isotropic auxeticity**

☆ Only **5 known crystals** with this property! **Also considered "rare": negative linear compressibility**

How rare are other so-called "rare" mechanical properties?

Mechanical properties of crystals

deformation $0E_i$

- **Elasticity is an anisotropic property**
- **Experimentally difficult to determine**
- * "Relatively easy" to compute from DFT
- Most people only care about the bulk modulus, but there is a lot more information!

	The Material	s Proiect								Δ	nps	Abo	out 🔨	,
	Home / Apps / Materials Explorer													
-	Materials Explorer													
Q														
A									a a citi					
A	Search for materials information by chemistry, compositi													
	Materials e.g. Li-Fe or Li,Fe or Li3Fe or mp-19017													
ŝ														
<u></u>		H Only Elements At Least Elements For							ormula					
÷		Li	Li Be Select elements to search for						В					
—		Na	Mg		* materials with on				ith oni	y these elements			AI	
${\color{black} \boxtimes}$		к	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga
#		Bb	Sr	Y	7r	Nb	Мо	Тс	Bu	Bh	Pd	Aa	Cd	In
*			De	·	1.14	Te						A.,		
蛊		Cs	Ва	La-Lu	Hī	Ia	VV	Re	Us	Ir	Pt	Au	Нд	
		Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh
—				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но
Jan				Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es
—														

С	omm	unity	~	ML	API	8	~	Ļ
	8	Refe	rence	s	i D	ocum	nentat	tion
ion, or property.								
				0			Sea	arch
la					He			
	С	Ν	0	F	Ne			
	Si	Р	S	CI	Ar			
ι	Ge	As	Se	Br	Kr			
	Sn	Sb	Те	I	Xe			
	Pb	Bi	Po	At	Rn			
)	FI	Мс	Lv	Ts	Og			
)	Er	Tm	Yb	Lu				
	Fm	Md	No	Lr				

Quantifying anomalous behavior

- Aterials Project: 133,691 inorganic compounds
- ☆ Elastic data at DFT level for 13,621 structures
- \Rightarrow Systematic tensorial analysis to answer this simple question: mechanical metamaterials are rare, but how rare exactly?

Chibani & Coudert, Chem. Sci. 2019

Quantifying anomalous behavior

Table 1List of completely auxetic materials in the Materials Pdatabase, with extremal values of directional Poisson's ratioisotropic average

Material ID	Structure	Synthesized	v_{\min}	$\nu_{\rm max}$
mp-1021516	K ₂ Sn	No	-0.26	-0.20
mp-9580	TlGaSe ₂	Yes	-0.94	-0.24
mp-982773	Na ₃ Tl	No	-0.50	-0.20
mp-862769	RbGe ₃	No	-1.25	-0.17
mp-974789	Rb ₃ Sn	No	-0.75	-0.73
mp-7621	KTcO ₄	Yes	-0.41	-0.04
mp-36508	SnHgF ₆	No	-1.08	-0.10
mp-15639	HgRhF ₆	Yes	-0.53	-0.14
mp-999274	RbNaH ₂	Yes	-0.77	-0.47
mp-697133	Cs_2CaH_4	Yes	-0.56	-0.32
mp-27718	CsHgBr ₃	Yes	-0.15	-0.06
mp-865080	NaCeAu ₂	No	-0.35	-0.29
mp-13925	Cs_2NaYF_6	Yes	-0.85	-0.77
mp-7961	Sr ₃ SnO	Yes	-0.08	-0.08
mp-989580	Cs ₂ KNF ₆	No	-0.18	-0.07
mp-989523	Rb_2NaAsF_6	No	-0.31	-0.20
mp-4051	$AlPO_4$	Yes	-0.58	-0.05
mp-631316	Li ₂ GaSb	No	-0.05	-0.05
mp-866229	Ca ₂ SnHg	No	-0.74	-0.65
mp-2739	TeO ₂	Yes	-0.77	-0.37
mp-989536	Cs ₂ LiNF ₆	No	-0.78	-0.75
mp-867920	$K_2Rh_2O_5$	No	-0.57	-0.00
mp-21200	PuGa ₂	Yes	-0.45	-0.07
mp-989590	Ca_6Sn_2NF	No	-0.58	-0.53
mp-20457	InP	Yes	-0.86	-0.77
mp-1025524	Zr ₂ TlC	Yes	-0.20	-0.02
mp-1017566	GePbO ₃	Yes	-0.50	-0.26
mp-1008282	Cr ₃ Fe	Yes	-0.25	-0.04

Project io, and	
	ጵ No clear systematic
$\langle \nu angle$	
-0.21	😒 What do all these materials
-0.59	have in common?
-0.4	
-0.62	
-0.2	😪 Can such complex relationships be
-0.45	a curr such complex relationships be
-0.4	captured by chemical descriptors?
-0.67	topological descriptors?
-0.47	<u> </u>
-0.12	
-0.3	A good case study for deep learning?
-0.82	~ A good case study for accp icarining.
-0.09	
-0.14	
-0.20	
-0.05	
-0.7	TTELD WANTED
-0.54	
-0.75	State of the state
-0.27	
-0.28	
-0.55	
-0.81	
-0.07	Chibani & Coudert, Chem. Sci. 2019
-0.38	
-0.13	

Predicting mechanical properties

We have a smaller data set (SiO₂ zeolites) that is chemically homogeneous

Different kinds of descriptors are available, with different information: A Hand-picked geometrical descriptors, relying on our know Unbiased/agnostic local geometrical descriptors (e.g. Smooth Overlap of Atomic Positions + PCA)

- \Rightarrow Porous network characteristics (Zeo++)
- ☆ Topological information?

- ☆ Geometrical descriptors are best
- \Rightarrow SOAP + PCA performs generally as well as "smart" descriptors

Evans & Coudert, Chem. Mater. 2017

Hunting for anisotropic zeolites

- Anisotropic mechanical properties are much harder to predict
- ☆ Force fields generally perform badly
- ☆ What we are looking for is a very rare property

☆ Let's try a multi-step approach

Gaillac, Chibani & Coudert, Chem. Mater. 2020

Hunting for anisotropic zeolites

590,811 hypothetical structures

from Pophale *et al*.

Gaillac, Chibani & Coudert, Chem. Mater. 2020

Hunting for anisotropic zeolites

- but anisotropic properties are terrible
- GBR model based on geometric descriptors only, trained on DFT data, achieves much better accuracy

* Future work: extend to zeolitic frameworks with different chemical composition (AIPO₄, gallogermanates, etc.) and extra-framework cations

 \Rightarrow Force field predicts structures adequately, average mechanical properties "okay",

Table 4. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for the Three Subsets and Their Assembly for the Prediction of the Poisson's Ratio

subset (method)	$\frac{\text{RMSE}}{(\nu_{\min})}$	$\frac{\text{MAE}}{(\nu_{\min})}$	$\frac{\text{RMSE}}{(\nu_{\text{max}})}$	$\frac{\text{MAE}}{(\nu_{\max})}$
all (GBR)	0.39	0.26	0.46	0.32
all (BKS)	1.4	0.51	9.8	2.1

Predicting the full tensor?

Digital Discovery

PAPER

Cite this: Digital Discovery, 2024, 3, 869

An equivariant graph neural network for the elasticity tensors of all seven crystal systems[†]

Mingjian Wen, ⁽¹⁾*^a Matthew K. Horton, ⁽¹⁾^{bc} Jason M. Munro, ^b Patrick Huck ⁽¹⁾ and Kristin A. Persson ^[]

Equivariant GNN Crystal **Elasticity Tensor** Α \rightarrow \bigcirc \Rightarrow в Z_i $Z_1, ..., Z_n$ $\vec{r}_{12},\ldots,\vec{r}_{nm}$ One-hot Radial Spherical Position Atom Basis Harmonics Embedding Embedding et 2 % $\bullet F_i$ Interaction $|F_1, ..., F_n|$ **♦***R* Block R YMean Pooling : Irreducible Tensor Product Scalar Interaction \oplus Symmetric Block Traceless Nonlinearity Output Generic Batch Norm Head +C $\bullet F_i$ +C

View Journal | View Issue

Digital Discovery

PAPER

Check for updates

Cite this: Digital Discovery, 2024, 3, 869

An equivariant graph neural network for the elasticity tensors of all seven crystal systems[†]

Mingjian Wen, (1) ** Matthew K. Horton, (1) bc Jason M. Munro, b Patrick Huck (1) d and Kristin A. Persson ^[]

Equivariant GNN **Elasticity Tensor** Crystal А 1.2 - \rightarrow \bigcirc \rightarrow 1.0 B 0.8 $Z_1, ..., Z_n$ $\vec{r}_{12},\ldots,\vec{r}_{nm}$ One-hot Radial Spherical Position Atom Basis 0.6 Harmonics Embedding Embedding an 2 G $\bullet F_i$ Interaction $|F_1, ..., F_n|$ **♦***R* Block 0.4 R YMean Pooling 1 Irreducible Tensor Product Scala 0.2 Interaction Ð Sym Block Traceless Nonlinearity Output Generic 0.0 + Batch Norm Head

+C

 $\bullet F_i$

View Article Online

View Journal | View Issue

+C

ECOLE NATIONALE SUPERIEURE DE CHIMIE

Can we model amorphous MOFs?

Chimie ParisTech

Modelling amorphous MOFs

Modelling amorphous MOFs

- Source Bond breaking and formation: ab initio molecular dynamics
- ☆ Disorder, no periodicity: large simulation box sizes
- Slow dynamics: long simulation times

0

☆ Ab initio MD works, sort of... but is painfully slow

Ring size

6

8

Comparing to other methods

Reverse Monte Carlo models, Continuous Random Network: underconstrained, you get what you put in

ReaxFF: friends don't let friends use ReaxFF

Castel et al, J Phys Chem C 2022 (review) Castel et al, J Phys Chem C 2022 (ReaxFF)

Polymatic (Jelfs group): great approach, but needs microscopic description

New compchem for amorphous MOFs

- \Rightarrow Ab initio MD describes best the local environment
- \Rightarrow Very high computational cost: small unit cell (~1000 atoms), short simulations (~200 ps) => millions CPU hours
- \Rightarrow Influence of initial configuration (our glasses look too much like the crystal)

* But these *ab initio MD runs* represent a large amount of data

Castel et al, Digital Discovery, 2023

New compchem for amorphous MOFs

Is already working quite well...

Approach #2: Using Polymatic + ML potential (collaboration with Imperial College London, Kim Jelfs group)

Castel et al, *Digital Discovery*, 2023

24

- \Rightarrow ML potentials for ZIFs with multiple topologies, multiple linkers
- ☆ ML potentials for other amorphous MOFs
- **Create a database of amorphous models and associated properties:**
 - porosity and adsorption
 - \Rightarrow topological analysis
 - dynamics of the framework
 - \Rightarrow mechanical and thermal properties (hard to measure experimentally)
- Amorphous phases have a lot of promise, but so little is known about them

What next?

- ☆ Pressure/volume curves are very difficult to reproduce with the current methodology
- * Learning stress appears to be much more difficult than energies and forces

Reproducibility of models $\overrightarrow{}$

Best practices in machine learning for chemistry

Statistical tools based on machine learning are becoming integrated into chemistry research workflows. We discuss the elements necessary to train reliable, repeatable and reproducible models, and recommend a set of guidelines for machine learning reports.

Nongnuch Artrith, Keith T. Butler, François-Xavier Coudert, Seungwu Han, Olexandr Isayev, Anubhav Jain and Aron Walsh

Introductory review X

APL Materials

Nature Chemistry, 2021

RESEARCH UPDATE

scitation.org/journal/apm

Machine learning approaches for the prediction of materials properties **I**

