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Metal–Organic Frameworks

Flexibility of coordination chemistry: 
pore geometry and topology 

Versatility of organic chemistry: 
pore size and internal surface

CENTRE MÉTALLIQUE 

 LIGANDS ORGANIQUES 

metal center

organic linker

Cristalline, organic–inorganic hybrid nanoporous materials

Applications: gas adsorption, catalysis, 
sensing, delivery, …

High structural flexibility of their 
frameworks

Important limitation for applications: 
hydrothermal & mechanical stability



Metal–Organic Frameworks

CENTRE MÉTALLIQUE 

 LIGANDS ORGANIQUES 

metal center

organic linker

Cristalline, organic–inorganic hybrid nanoporous materials

Metals (many) and inorganic blocks (even more) 

Organic linkers… and functionalization 

Multivariate MOFs are possible 

Topology 

Guest molecule… or guests 

Thermodynamic space: temperature, pressure, composition



Why data-based methods?

Coudert, Chem. Mater. 2023

Since this meeting started, 
61 MOF papers were tweeted

Daglar & Keskin, 2020



ML methods for chemical sciences

Property prediction: from structure or from composition 
(supervised learning, data obtained experimentally or computationally) 

High-throughput screening: applying predictor at large scale 

Analysis and exploration of diversity, clustering of molecules 

Generative ML methods: creating new molecules, new materials 

Text and data mining: a lot of information in published literature, in notebooks 

AI for synthesis prediction: propose a synthesis method/protocal, 
possibly drive robotic chemistry lab 

ML to improve computational chemistry: 
using machine learning to design new force fields, new DFT functionals, etc. 

… and many more…



Chimie ParisTech

Can we predict mechanical 
properties of crystalline materials?



rotating square lattice

metamaterials meta-MOFs

bending of sharp tips buckling instability ligand bucklingnode bending

wine-rack topology

composite material with a structure that 
exhibits properties not usually found in 

natural materials 

μετά = beyond 

metamaterials

negative thermal expansion 
negative compressibility 
negative adsorption 
breathing 
chiral induction 
…

meta-MOFs

Meta-MOFs Coudert & Evans, Coord. Chem. Rev. 2019



Mechanical properties of crystals
 In 2016, we identified by chance a zeolite with isotropic auxeticity

 Only 5 known crystals with this property! 
 Also considered “rare”: negative linear compressibility 

 How rare are other so-called “rare” mechanical properties?



Mechanical properties of crystals
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Elasticity is an anisotropic property 
Experimentally difficult to determine 
“Relatively easy” to compute from DFT 

Most people only care about the bulk 
modulus, but there is a lot more 
information!





Quantifying anomalous behavior
Materials Project: 133,691 inorganic compounds  
Elastic data at DFT level for 13,621 structures 

Systematic tensorial analysis to answer this simple question: 
mechanical metamaterials are rare, but how rare exactly?

Chibani & Coudert, Chem. Sci. 2019



Quantifying anomalous behavior

No clear systematic… 

What do all these materials 
have in common? 

Can such complex relationships be 
captured by chemical descriptors? 
topological descriptors? 

A good case study for deep learning?

Chibani & Coudert, Chem. Sci. 2019



Predicting mechanical properties
We have a smaller data set (SiO2 zeolites) that is chemically homogeneous 

Different kinds of descriptors are available, with different information: 
Hand-picked geometrical descriptors, relying on our know 
Unbiased/agnostic local geometrical descriptors 
(e.g. Smooth Overlap of Atomic Positions + PCA) 
Porous network characteristics (Zeo++) 
Topological information?

Evans & Coudert, Chem. Mater. 2017

Geometrical descriptors are best 
SOAP + PCA performs generally as 
well as “smart” descriptors



Hunting for anisotropic zeolites

Anisotropic mechanical properties are much harder to predict 
Force fields generally perform badly 
What we are looking for is a very rare property

Gaillac, Chibani & Coudert, Chem. Mater. 2020

Let’s try a multi-step approach



Hunting for anisotropic zeolites

590,811 hypothetical structures 

from Pophale et al.

462,248 mechanically stable 

BKS 
force field

predicted auxetic: 578

random subset: 742

DFT
DFT

392 stable structures

599 stable structures

machine 
learning

trained predictor

Gaillac, Chibani & Coudert, Chem. Mater. 2020



Hunting for anisotropic zeolites

Force field predicts structures adequately, average mechanical properties “okay”, 
but anisotropic properties are terrible 
GBR model based on geometric descriptors only, trained on DFT data, 
achieves much better accuracy

Future work: extend to zeolitic frameworks with different chemical composition 
(AlPO4, gallogermanates, etc.) and extra-framework cations



Predicting the full tensor?



Predicting the full tensor?
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Can we model amorphous MOFs? 



Modelling amorphous MOFs
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Figure 1 | Structure of the ZIF-4 crystal, glass, and structural evolution upon heating. a, The construction from metal ion and linker of Zn(Im)4 tetrahedra,
the basic building unit of ZIF-4 (Im, imidazolate; Zn, green; N, blue; C, grey). b, Representation of the cag topology adopted by ZIF-4, where each polyhedra
corner corresponds to one Zn(Im)4 tetrahedron. c, Crystalline structure of ZIF-4, with free volume represented in orange. d, Atomic configuration of the
melt-quenched glass, gained from modelling synchrotron and neutron total scattering data. e, Experimental neutron structure factor F(Q) data and the fit
from the configuration shown in d. Inset: X-ray data and fit. f, Experimental glass (top) and computational ZIF-4 (bottom) X-ray structure factors upon
heating.

amorphous, non-glass ZIF phase (that is, one which had not passed
through the liquid state)21. No changes to the network topologywere
necessary, and the resultant configuration is shown in Fig. 1d. A
good fit to the experimental structure factors was obtained (Fig. 1e),
which reproduces all salient features. This model represents the first
obtained using experimental data on a MOF glass.

Synchrotron X-ray di�raction data were then used to evaluate
structural changes in the glass upon heating. Given the strong analo-
gies of the structure of the melt-quenched ZIF glass to amorphous
SiO2, the density of the melt was approximated as 95% of that of the
glass at Tm. Figure 1f shows the structure factor F(Q) recorded from
the glass at temperatures of 304, 778, 796 and 856K on heating—
while the corresponding total PDFs are plotted in Supplementary
Fig. 1. The experimental structure factor for the glass at room
temperature is largely similar to that previously reported14, with no
visible Bragg peaks. The PDF contains the expected peaks at approx-
imately 1.3 Å, 2Å, 3Å, 4Å and 6Å, which correspond to C–C/C–N,
Zn–N, Zn–C, Zn–N and Zn–Zn pair correlations, respectively.

Upon heating from 304 to 778K, both the intensity and position
of the first sharp di�raction peak (FSDP), centred at 1.1 Å�1,
remained approximately constant, as was the case with other visible
features in the F(Q). However, further heating to 856K resulted in
a more pronounced intensity reduction and a shift in the position
of the FSDP to 1.3 Å�1, along with a near-total disappearance of any
features at higher Q values. This is in stark contrast to the case of
liquid silica, where negligible changes in the FSDP upon melting
are indicative of significant intermediate range order23. The changes
in the F(Q) result in a significantly decreased Zn–Zn correlation
peak in the corresponding high-temperature PDFs, centred on 6Å
(Supplementary Fig. 1).

To probe the evolution of the ZIF structure upon heating and
liquid formation from a microscopic point of view, we performed
first-principlesmolecular dynamics simulation (FPMD) by running
constant-temperature MD simulations at temperatures of 300, 600,
800, and up to 2,250K. (Although the higher temperatures would
not be physically relevant for the experimental system, they are

made necessary by the relatively short times explored in FPMD, to
gather statistics on relatively rare events and high thermodynamic
barriers.) Because of the computational cost of FPMD, these
simulations cannot be performed directly on the glass model—the
unit cell of which is prohibitively large. Instead, we used the ZIF-4
crystalline phase as starting point, with the change in structure
factor upon heating in good agreement with the trends observed
experimentally (Fig. 1f). Similarly close agreement is also witnessed
in the variable temperature total PDFs (see Supplementary Fig. 2).

Moreover, in addition to the total PDFs, we calculated from
the MD trajectories the PDFs for specific atom–atom correlations,
which provide greater understanding of the salient real-space
structural movements. We plot in Fig. 2a–c the partial radial
distribution functions gij(r) for Zn–N, Zn–Im (where Im is the
centre of mass of the imidazolate group) and Zn–Zn pairs. In
addition to the overall thermal broadening of the peaks, there is a
clear loss of long-range order at high temperature. At intermediate
temperatures (around 1,000K), the system has liquid-like disorder,
with gij(r) that do not go to zero after the first peak, although it
retains some order at distances larger than 10Å. To characterize
further this state, we plot in Fig. 2d the generalized Lindemann
ratio24, computed from the width of the first peak in the Zn–N
and Zn–Zn partial radial distribution functions. The usual criterion
used to determine melting from the Lindemann ratio is between
10 and 15%, which indicates in our case a melting temperature
between 1,000 and 1,500K—and we note that the Zn–Zn ratio
shows a clear disruption in slope at 1,200K.

Thermodynamics of melting
Approaching the phenomenon from a thermodynamic standpoint,
we plot in Fig. 2e the evolution of heat capacity CV as a function
of temperature. We see a clear jump in the heat capacity, indicative
of a solid–liquid phase transition, from the value of the crystal
phase (CV ⇡ 2.2 J g�1 K�1) to a higher value for the ZIF liquid
(CV ⇡2.8 J g�1 K�1). Integration yields an estimate for the enthalpy
of fusion of the ZIF of1Hfus =173 J g�1, which is in line with values
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Liquid metal–organic frameworks
Romain Gaillac1,2, Pluton Pullumbi2, Kevin A. Beyer3, KarenaW. Chapman3, David A. Keen4,
Thomas D. Bennett5* and François-Xavier Coudert1*

Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields,
covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on
crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective
by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF
liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron
pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon
and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the
chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the
MOF liquid.

Crystalline metal–organic frameworks (MOFs) have been
proposed for application in a variety of situations which
take advantage of their highly ordered and nanoporous

structures—for example, gas sorption and separation1–3, catalysis4
and ion transport5. Inherent defects6, structural disorder7 and
near-ubiquitous flexibility8 present significant challenges in the
development of highly robust, selective systems from perfect
crystals. However, they also present opportunities, in creating
functional ‘defective by design’ materials9,10.

Non-crystalline, or amorphous MOF systems are formed by
avoidance of crystallization, or induced collapse of crystalline
systems by pressure, temperature, or ball-milling11. In the case of
the zeolitic imidazolate framework (ZIF) family12,13, which adopt
similar structures to inorganic zeolites and are formed from Mn+

(Mn+ = for example, Li+, B+, Zn2+) inorganic nodes connected by
Im-based (Im = imidazolate, C3H3N2

�) ligands, such amorphous
systems resemble the continuous random network of amorphous
SiO2. Recently, the formation of amolten ZIF state from a crystalline
phase was observed in an inert argon atmosphere. No mass loss was
observed during the formation of the liquid, which upon cooling
yielded a melt-quenched glass, possessing an extended Zn–Im–Zn
coordination network14. Unlike reversible solid–liquid transitions in
one- or two-dimensional coordination polymers which occur below
500K (ref. 15), melting processes in ZIFs have been observed only
at high temperatures, that is, those exceeding 700K.

The novelty of the liquid and glass states means microscopic
insight into the mechanism of melting, and the nature of the
liquid produced are of great interest when considering the
generality of the mechanism in the wider MOF family. However,
thus far, the narrow temperature range and poorly understood
kinetics-time stability of the fleeting liquid phase have precluded
information on any liquid MOF state. Particularly salient and
intriguing considerations pertaining to the liquid involve ‘memory’
of the crystalline framework conferred by remnant framework
connectivity, coordinative framework dynamics and the proximity
of structure to that of an ionic or a strongly associated liquid16.

The ability to form hybrid ‘porous liquids’, analogous to that of the
organic systems of the Cooper and James groups17, would present a
significant advance in the field, and help shift attention away from
the solid state.

Motivated by the above questions and linking the MOF field to
liquid, glass and polymer science, we studied themelting of ZIF-4 via
experimental and computational means. The dynamic nature of the
transition necessitated use of first-principles molecular dynamics
(FPMD) calculations, which have previously been successfully used
in ionic liquid and disordered carbonate systems18,19. Results were
then combined with in situ variable temperature X-ray and ex situ
neutron pair distribution function (PDF) experiments to yield a
complete picture of the melting process, and, for the first time, an
insight into the structure of a MOF liquid.

Structural characterization upon heating and melting
We first studied the evolution in structure of ZIF-4, which is
composed of Zn(Im)4 tetrahedra linked by Zn–N coordinative
bonds (Fig. 1a,b), and forms a three-dimensional, crystalline
network containing a maximum cavity diameter of 4.9 Å (Fig. 1c).
It shares a topology with that of the mineral variscite, CaGa2O4,
and a melting point of about 865K has previously been identified,
although no atomistic modelling of experimental data has to date
been performed on any MOF liquid or glass.

A sample of ZIF-4 was prepared and evacuated according to pre-
vious literature procedures20, and heated to 865K in an argon tube
furnace, before natural cooling to room temperature. The density
has previously been shown to increase upon formation of a dense
crystalline phase from ZIF-4 (1.24 g cm�3 to 1.582 g cm�3) and to
1.625 g cm�3 for the glass21,22. Neutron and X-ray total scattering
data were then collected using the GEM Di�ractometer at the ISIS
spallation source, and the Diamond Light Source, UK, respectively.
Conversion to the PDFs was performed after data corrections (see
Methods). ReverseMonteCarlo (RMC)modellingwas subsequently
performed, using as a starting model a previous Zn–Im–Zn con-
tinuous random network (CRN) configuration, arising from an

1Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France. 2Air Liquide, Centre de Recherche Paris
Saclay, 78354 Jouy-en-Josas, France. 3X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
Illinois 60439, USA. 4ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 0QX, UK. 5Department of Materials Science and
Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK. *e-mail: tdb35@cam.ac.uk; fx.coudert@chimie-paristech.fr
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Figure 3 | Molecular mechanism of ZIF-4 melting. a, Distribution of zinc coordination numbers as a function of temperature, from 0-fold coordinated (red)
to 4-fold (light blue). 5-fold coordination is indicated in black, but is close to the y=0 axis. b, Temperature evolution for each degree of coordination of zinc
cations. Temperatures range from 300 K (light blue) to 2,250 K (red). c, Behaviour during an exchange of a nitrogen atom by another nitrogen atom, in the
first coordination sphere of a zinc cation, averaged over all such events (all exchanges on all zinc cations). The distance between the incoming nitrogen and
the zinc is plotted in red, and that between the outgoing nitrogen and the zinc in blue. The green curve corresponds to the average coordination number of
the zinc cation involved in the exchange. The flat dashed lines are the average coordination number over the whole simulation at 300 K (light blue) and
2,000 K (green). d, Visualization of a representative imidazolate exchange event. Zn, green; N (initially coordinated), light blue; N, blue; N (coordinated
after exchange), orange; C, grey.

Supplementary Figs 6 and 7, and Supplementary Tables 2 and 3)
demonstrate the Arrhenian behaviour of the system, reinforcing the
idea that melting is driven by rare events disturbing the network.

Characterization of the liquid ZIF
To characterize the dynamics of the ZIF in the liquid phase, we
calculated from our FPMD the translational di�usion of both
zinc cations and imidazolate anions. The plots of mean square
displacement over time, shown in Fig. 4a,b, clearly show di�usive
behaviour at temperatures above 1,200K—that is, in the liquid
phase. The translational di�usion of zinc and imidazolate are
clearly linked strongly, as the coe�cients are very similar (see
Supplementary Table 4) and both follow an Arrhenius law (see
Supplementary Figs 8 and 9): for example, at 1,500K we have
DIm = 7.7 10�10 m2 s�1 and DZn = 6.5 10�10 m2 s�1. This similarity
in anion and cation di�usion is a rather common feature for ionic
liquids. From these di�usion coe�cients, we estimate the viscosity
using the Stokes–Einstein relation (⌘ = kT/6⇡rD): with a Zn2+

ionic radius of 88 pm, the viscosity at 1,500K is 19mPa s, and
can be extrapolated by the Arrhenius law to 8,000mPa s at 840K,
the experimental melting temperature. Analysis of linker rotations
(see Supplementary Text) shows a regime of free rotation of the
imidazolate linkers, at intermediate temperatures before melting.

Given the focus on porosity in MOFs, we investigated the nature
of the liquid ZIF from a structural point of view. We performed
statistical analysis of the instantaneous porosity along FPMD tra-
jectories at all temperatures using a geometric criterion for the
determination of porosity and a probe diameter of 2.4 Å, corre-
sponding to the kinetic diameter of helium. The evolution of the
pore volume distribution is depicted in Fig. 4c, from 300K to higher
temperatures. As expected for the solid phase (T <1,200K), a slight
broadening of the distribution is observed, which corresponds to in-
creased thermal motion. However, at higher temperatures, and par-
ticularly in the liquid phase, we see that the porosity is maintained
overall, with only a slight deviation in average to lower pore volumes.
This result, obtained in constant-volume simulations performed

at a density of 1.25 g cm�3 inferred from the experimentally avail-
able data, was confirmed by shorter constant-pressure simulations.
Moreover, analysis of the accessible pore volume (that is, excluding
nonconnected void pockets) shows in Supplementary Fig. 10 that a
large fraction of the void space in the ZIF liquid is accessible porosity
(going from 74% in crystalline ZIF-4 at 300K to 95% in the liquid
at 1,500K). We thus conclude that, even at very high temperatures,
the ZIF forms a hybrid ‘porous liquid’, quite di�erent in nature from
the organic systems recently reported17, which are formed from cage
molecules providing a well-defined pore space in solvents whose
molecules are too bulky to enter the pores29,30. This finding is in
agreement with the available experimental data on the free volume
of ZIF glasses31. This porosity is found to be larger than that typical
of imidazolium ionic liquids (whose ions are roughly of the same size
as the imidazolate anion): those systems feature void space whose
size distribution is typically negligible above 1Å in radius32,33.

To link the predicted liquid structure to experimental informa-
tion, we performed RMC modelling on the X-ray total scattering
data collected at 856K (Fig. 1f). The atomistic configuration derived
for the glass in Fig. 1d was used as a starting model, with a reduced
density to reflect the changes upon melting. The final configuration
is shown in Fig. 4d, along with the fit to the experimental X-ray
structure factor (Supplementary Fig. 11). Whereas the internal sur-
face of the glass at ambient temperature was calculated to be 4.8%,
again using a standard probe diameter of 2.4 Å, that of the liquid at
856K increased to 16.2%. Whilst transient in nature, linked voids
appear irregularly distributed throughout the configuration.

Perspectives
In this work, we introduce the general term ‘MOF liquid’, for a
liquid formed from the melting of a MOF, due to the retention of
chemical configuration and coordinative bonding modes between
the solid and liquid phases. Importantly, we show the retention of
porosity in the liquid state, with a pore volume larger than in the
glass state, making liquid ZIF-4 a rare example of an intrinsically
porous liquid, enabling a compromise between the selectivity of

4
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Modelling amorphous MOFs

Bond breaking and formation: ab initio molecular 
dynamics 
Disorder, no periodicity: large simulation box sizes 
Slow dynamics: long simulation times
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Ab initio MD works, sort of… 
but is painfully slow



Comparing to other methods

22

Reverse Monte Carlo models, Continuous Random Network: 
underconstrained, you get what you put in 

Polymatic (Jelfs group): great approach, but needs microscopic description 

ReaxFF: 
friends don’t let friends use ReaxFF

Castel et al, J Phys Chem C 2022 (ReaxFF) N–Zn–N angle

Castel et al, J Phys Chem C 2022 (review)



New compchem for amorphous MOFs

23

Ab initio MD describes best the local environment 

Very high computational cost: 
small unit cell (~1000 atoms), short simulations (~200 ps) => millions CPU hours 

Influence of initial configuration (our glasses look too much like the crystal) 

But these ab initio MD runs represent a large amount of data

Castel et al, Digital Discovery, 2023

MD configurations 
r, Epot, F, σ

train deploy

E(3)-equivariant 
neural networks

MD with machine 
learned potential



New compchem for amorphous MOFs

24

Approach #1: Melt-quenching the crystals 
Is already working quite well… 

Approach #2: Using Polymatic + ML potential 
(collaboration with Imperial College London, Kim Jelfs group)

Castel et al, Digital Discovery, 2023



What next?

25

ML potentials for ZIFs with multiple topologies, multiple linkers 

ML potentials for other amorphous MOFs 

Create a database of amorphous models and associated properties: 

porosity and adsorption 

topological analysis 

dynamics of the framework 

mechanical and thermal properties (hard to measure experimentally) 

Amorphous phases have a lot of promise, but so little is known about them

Pressure/volume curves are very difficult to 
reproduce with the current methodology 
Learning stress appears to be much more 
difficult than energies and forces
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Best practices in machine learning for chemistry
Statistical tools based on machine learning are becoming integrated into chemistry research workflows. We discuss 
the elements necessary to train reliable, repeatable and reproducible models, and recommend a set of guidelines 
for machine learning reports.

Nongnuch Artrith, Keith T. Butler, François-Xavier Coudert, Seungwu Han, Olexandr Isayev, 
Anubhav Jain and Aron Walsh

Chemistry has long-benefited from 
the use of models to interpret 
patterns in data, from the Eyring 

equation in chemical kinetics, the scales 
of electronegativity to describe chemical 
stability and reactivity, to the ligand-field 
approaches that connect molecular structure 
and spectroscopy. Such models are typically 
in the form of reproducible closed-form 
equations and remain relevant over the 
course of decades. However, the rules of 
chemistry are often limited to specific 
classes of systems (for example, electron 
counting for polyhedral boranes) and 
conditions (for example, thermodynamic 
equilibrium or a steady state).

Beyond the limits where simple analytical 
expressions are applicable or sophisticated 
numerical models can be computed, statistical 
modelling and analysis are becoming valuable 
research tools in chemistry. These present 
an opportunity to discover new or more 
generalized relationships that have previously 
escaped human intuition. Yet, practitioners of 
these techniques must follow careful protocols 
to achieve levels of validity, reproducibility, 
and longevity similar to those of established 
methods.

The purpose of this Comment is to suggest 
a standard of ‘best practices’ to ensure that 
the models developed through statistical 
learning are robust and observed effects are 
reproducible. We hope that the associated 
checklist (Fig. 1 and Supplementary Data 1)  
will be useful to authors, referees, and readers 
to guide the critical evaluation of, and provide 
a degree of standardization to, the training 
and reporting of machine learning models. 
We propose that publishers can create 
submission guidelines and reproducibility 
policy for machine-learning manuscripts 
assisted by the provided checklist. We hope 
that many scientists will spearhead this 
campaign and voluntarily provide a machine 
learning checklist to support their papers.

The growth of machine learning and 
making it FAIR
The application of statistical machine 
learning techniques in chemistry has a long 

history1. Algorithmic innovation, improved 
data availability, and increases in computer 
power have led to an unprecedented growth 
in the field2,3. Extending the previous 
generation of high-throughput methods, and 
building on the many extensive and curated 
databases available, the ability to map 
between the chemical structure of molecules 
and materials and their physical properties 
has been widely demonstrated using 
supervised learning for both regression  
(for example, reaction rate) and classification 
(for example, reaction outcome) problems. 
Notably, molecular modelling has benefited 
from interatomic potentials based on 
Gaussian processes4 and artificial neural 
networks5 that can reproduce structural 
transformations at a fraction of the cost 
required by standard first-principles 
simulation techniques. The research 
literature itself has become a valuable 
resource for mining latent knowledge using 
natural language processing, as recently 
applied to extract synthesis recipes for 
inorganic crystals6. Beyond data-mining, the 
efficient exploration of chemical hyperspace, 
including the solution of inverse-design 
problems, is becoming tractable through 
the application of autoencoders and 
generative models7. Unfortunately, the lack 
of transparency surrounding data-driven 
methods has led some scientists to question 
the validity of results and argue that the field 
faces a “reproducibility crisis”8.

The transition to an open-science 
ecosystem that includes reproducible 
workflows and the publication of 
supporting data in machine-readable 
formats is ongoing within chemistry9. In 
computational chemistry, reproducibility 
and the implementation of mainstream 
methods, such as density functional theory, 
have been investigated10. This, and other 
studies11, proposed open standards that 
are complemented by the availability of 
online databases. The same must be done 
for data-driven methods. Machine learning 
for chemistry represents a developing 
area where data is a vital commodity, but 
protocols and standards have not been 

firmly established. As with any scientific 
report, it is essential that sufficient 
information and data is made available for 
a machine learning study to be critically 
assessed and repeatable. As a community, 
we must work together to significantly 
improve the efficiency, effectiveness, and 
reproducibility of machine learning models 
and datasets by adhering to the FAIR 
(findable, accessible, interoperable, reusable) 
guiding principles for scientific data 
management and stewardship12.

Below, we outline a set of guidelines 
to consider when building and applying 
machine learning models. These should 
assist in the development of robust models, 
providing clarity for manuscripts, and 
building the credibility needed for statistical 
tools to gain widespread acceptance and 
utility in chemistry.

Guidelines when using machine  
learning models
1. Data sources. The quality, quantity 
and diversity of available data impose an 
upper limit on the accuracy and generality 
of any derived model. The use of static 
datasets (for example, from established 
chemical databases) leads to a linear 
model construction process from data 
collection → model training. In contrast, 
dynamic datasets (for example, from guided 
experiments or calculations) lead to an 
iterative model-construction process that 
is sometimes referred to as active learning, 
with data collection → model training → 
use model to identify missing data → repeat. 
Care must be taken with data selection in 
both regimes.

Most data sources are biased. Bias 
can originate from the method used 
to generate or acquire the data, for 
example, an experimental technique that 
is more sensitive to heavier elements, or 
simulation-based datasets that favour 
materials with small crystallographic unit 
cells due to limits on the computational 
power available. Bias can also arise from the 
context of a dataset compiled for a specific 
purpose or by a specific sub-community, 
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ABSTRACT
We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with
these techniques.We illustrate the workflow ofML for computational studies of materials, with a specific interest in the prediction of materials
properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and
questions to be considered in implementing ML-based modeling.
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I. INTRODUCTION

The pace of systematic materials discovery has quickened in the
last decade. The number of studies systematically exploring various
families of materials, with the goal of discovering existing materi-
als with unsuspected properties, or designing novel materials with
targeted properties, is growing at an astounding rate. Databases
of experimental structures—in particular, crystalline structures—
continue to grow at a steady pace and are complemented with larger
and larger databases of physical and chemical properties. High-
throughput experiments and combinatorial materials synthesis are
aided by robotics and artificial intelligence, performing reactions
and analysis faster. On the computational side of things, molecu-
lar simulations have expanded in scale, allowing scientists to pre-
dict the structure and properties of complex materials even before
they are synthesized. The prediction of compound properties with
high accuracy can be coupled with high-throughput screening tech-
niques to help search for new materials. Yet, despite the advances
in the computational power, computational methods—whether at
the quantum or classical level—are still relatively time consum-
ing and can hardly explore the properties of all possible chemical
compositions and crystal structures. In order to reach this goal of
systematic exploration of chemical space and to help leverage the
large-scale databases of structures and properties that are nowadays
available, computational chemistry and materials science are turn-
ing more and more often to machine learning (ML), a subset of

artificial intelligence (AI) that has seen tremendous developments
in recent years and widespread application across all fields of
research.

The main idea of artificial intelligence emerged in the 1950s
when Turing wondered if a machine could “think.”1 The term “arti-
ficial intelligence” (AI) was first coined by John McCarthy in 1955
and is defined as the set of theories and techniques implemented in
order to create machines capable of simulating intelligence. In other
words, AI is the endeavor to replicate the human intelligence in
computers. In 1959, Samuel produced computer programs that were
playing checkers (drafts) better than the average human and that
could learn to improve from past games.2 Since then, AI and data-
intensive algorithms have seen such an important development that
they are sometimes called the “fourth paradigm of science”3 or the
“fourth industrial revolution.” AI is now routinely used in different
fields: face recognition, image classification, information engineer-
ing, linguistics, psychology, and medicine, and it has impact in the
fields of philosophy and ethics.

AI-powered machines are usually classified under two broad
categories: general and narrow. The artificial general intelligence
(AGI) is a machine that can learn to solve any problem that the
human intellect can solve. Also referred to as “strong AI” or “full
AI,” it is currently hypothetical, the kind of artificial intelligence
that we see in science fiction movies. The creation of AGI is an
important goal for some AI researchers, but is an extremely diffi-
cult quest and generally considered too complex to be achieved in
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