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⇒ The accuracy of the obtained results depends on the quality of the PES

Reactions
barriers / transition states

Energy
global and local minima

Vibrations
properties, analysis

Forces
dynamics, free energies

Central Role:
Potential Energy Surface 

Introduction

Goal: 

Atomic-level understanding of complex systems in chemistry and materials science

⇒ Predictive computer simulations with first-principles quality
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Definition of Machine Learning Potentials

Challenge: 

A pragmatic definition of Machine Learning Potentials

⇒ Where is the border between fitted potentials and MLPs?

There is no universally accepted definition of machine learning potentials

�    A machine learning potential uses a flexible machine learning method to 
      represent the potential energy surface (total energy and its analytic derivatives) 
      as a function of the atomic coordinates.

�    A machine learning potential is constructed using a consistent set of reference 
      electronic structure calculations.

The construction essentially all atomistic potentials involves 
fitting/parameter optimization.

⇒ in principle no physical functional form needed

⇒ No “artificial intelligence”, just brute force fitting (?)

3

Jörg Behler Grenoble 2024

The Cambrian Explosion of Machine Learning Potentials: Reasons

Modern Machine
 Learning Potentials

Modern 
Computer 
Hardware

(GPUs)

Open Source 
Libraries

(TensorFlow, 
PyTorch)

Substantial 
Electronic Structure 
Data Since ≈ 2005

Advances in 
Machine Learning

Advances in 
Descriptors

Incorporation 
of Physics

(CPU, RAM, HDD)
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The Cambrian Explosion of Machine Learning Potentials
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Possibilities:

How to get an overview about the huge amount of papers?

We need a classification scheme for machine learning potentials
What are the criteria?

Historical?

Physics?
Applicability?

ML Method?

Descriptors?

⇒ There is no unique way

Machine Learning Potentials
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First-Generation
Machine Learning Potentials

1995 – 2007

7

Jörg Behler Grenoble 2024

Machine Learning Potentials

1995 2000 2005 2010 2015 2020

First-Generation MLPs

• all methods in the first decade are based on neural networks

• about 30 papers (1995 – 2007) from about 10 groups

T.B. Blank, S.D. Brown, A.W. Calhoun, and D.J. Doren, J. Chem. Phys. 103 (1995) 4129.

H. Gassner, M. Probst, A. Lauenstein, K. Hermansson, J. Phys. Chem. A 102 (1998) 4596.   

S. Lorenz, A. Groß, M. Scheffler, Chem. Phys. Lett. 395 (2004) 210.   

S. Manzhos, T. Carrington, Jr., J. Chem. Phys. 125 (2006) 194105.   

J. Behler, S. Lorenz, K. Reuter, J. Chem. Phys. 127 (2007) 014705.   

Examples:

⇒ Basic ideas and key concepts are well established

Focus:
Training
Symmetry
Surfaces
Spectroscopy
Surface Symmetry
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Machine Learning Potentials

1995 2000 2005 2010 2015 2020

Limitation: Applicable to low-dimensional systems only

Challenges:
• limited number of dimensions (up to » 12)
• permutation symmetry of the system not included
   (change in order of atoms changes the energy)
• energy depends on rotation and translation
• potential is valid only for a given system size 
   (number of atoms)

First-Generation MLPs

Þ Another approach is required for high-dimensional systems
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Second-Generation
Machine Learning Potentials:

Locality
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High-Dimensional Neural Network Potentials

RA1

RAN

RB1

RBM

GA1

GAN

GB1

GBM

EA1

EAN

E
E

B
1

short

EBM

Cartesian
Coordinates

Atom-Centered
Symmetry
Functions

Atomic
Energy NNs

Atomic
Energies

Structure for a binary system ANBM

local atomic energies
J. Behler, M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401.
J. Behler, J. Chem. Phys. 134 (2011) 074106.
J. Behler, Angew. Chem. Int. Ed. 56 (2017) 12828. 

3. Description of local atomic environments by 
     many-body atom-centered symmetry functions
     ⇒ structural fingerprints
     (invariances: rotation, translation, permutation)

E = Ei
i
∑ +Eelec

1. Total energy is the sum of atomic energies

2. Atomic energies depend on local environments
    ⇒ cutoff radius

3 Steps:

⇒ applicable to thousands of atoms
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Second-Generation Machine Learning Potentials

1995 2000 2005 2010 2015 2020

First-Generation MLPs

Second-Generation MLPs

Condensed Systems
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1995 2000 2005 2010 2015 2020

2007:
High-Dimensional Neural 

Network Potentials
Phys. Rev. Lett. 98 (2007) 146401

Phys. Rev. Lett. 104 (2010) 136403

2010:
Gaussian Approximation 

Potentials

J. Comp. Phys. 285 (2015) 316

2015:
Spectral Neighbor 
Analysis Potentials

Multisc. Mod. Sim. 14 (2016) 1153

2016:
Moment Tensor 

Potentials

Phys. Rev. B 99 (2019) 014104

2019:
Atomic Cluster Expansion

Second-Generation Machine Learning Potentials

First-Generation MLPs

Second-Generation MLPs
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1995 2000 2005 2010 2015 2020

2007:
High-Dimensional Neural 

Network Potentials
Phys. Rev. Lett. 98 (2007) 146401

Phys. Rev. Lett. 104 (2010) 136403

2010:
Gaussian Approximation 

Potentials

J. Comp. Phys. 285 (2015) 316

2015:
Spectral Neighbor 
Analysis Potentials

Multisc. Mod. Sim. 14 (2016) 1153

2016:
Moment Tensor 

Potentials

Phys. Rev. B 99 (2019) 014104

2019:
Atomic Cluster Expansion

And many more ...

⇒ Dominant type of machine learning potential in simulations

Second-Generation Machine Learning Potentials

Second-Generation MLPs

First-Generation MLPs
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1995 2000 2005 2010 2015 2020

First-Generation MLPs

Second-Generation MLPs

Limitation: Truncation of the interactions at the cutoff radius

Second-Generation Machine Learning Potentials
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Hessian-based Locality Test

M. Herbold and J. Behler, J. Chem. Phys. 156 (2022) 114106.

Hessian: with

A Hessian-Based Analytic Locality Test

Challenge: Atomic forces depend on the entire environment
• different neighbors interact differently
   ⇒ distance and type of bonding are important
   ⇒ influence of individual neighbors is of interest

• forces are very small or even zero in symmetric environments
   ⇒ forces are not a good measure for interaction strength

• force convergence of central atom measures only total interaction
   ⇒ forces can cancel each other also in non-symmetric environments

Solution:

⇒ information about dependence of an atomic force on each atom in the system
⇒ spatial cutoff can be quantified!

16
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Hessian-based Locality Test

M. Herbold and J. Behler, J. Chem. Phys. 156 (2022) 114106.

DFT Hessian:

⇒ Hessian submatrix norm

Dependence of force on each individual 
atom in the system can be quantified

with

Dependence of atomic force 
vector on atomic position of a 
neighbor: (3x3) matrix

⇒ inconvenient, scalar property needed

Hessian: (3N x 3N) matrix
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Hessian-based Locality Test

1D Model Systems

atom of interest: - contribution of each atom in the system can be quantified
- no cancellation of contributions possible

M. Herbold and J. Behler, J. Chem. Phys. 156 (2022) 114106.

Alkane Alkene Polyaromatic Localized aromatic

terminal carbon

18
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Second-Generation Machine Learning Potentials

2G MLPs are the main production methods for MLP-driven simulations

Predefined Descriptors
(HDNNP, SOAP, DeePMD,...)

Message Passing Neural Networks
(DTNN, SchNet, MACE, ...)

• simple ⇒ fast
• most applications so far
• more difficult for many elements

• iterative extension of environment
• learnable features
   ⇒ more demanding

⇒ for a given system the accuracy is very similar

There are now two classes:
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Second-Generation Machine Learning Potentials

The cutoff used in second-generation MLPs is an approximation!
⇒ Convergence tests are needed

Locality tests:

If the training of the MLP for a system does not work, there is a physical reason 
⇒ must be understood

2) Descriptors are insufficient

3) Physics is missing
⇒ properties of different structures are averaged ⇒ large errors 

⇒ For some systems, long-range interactions may be important!

V. L. Deringer and G. Csányi, Phys. Rev. B 95 (2017) 094203.

M. Herbold and J. Behler, J. Chem. Phys. 156 (2022) 114106.

Statistical analysis:

Hessian-based:

1) Data is not accurate enough

20
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Third-Generation 
Machine Learning Potentials:

Long-Range Interactions
What about electrostatics?
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Learning Electrostatic Multipoles

S. Houlding, S. Y. Liem and P. L. A. Popelier, Int. J. Quant. Chem. 107 (2007) 2817.

Goal:

Use ML to represent flexible electrostatic charges and multipoles 
as a function of the molecular structure.

⇒ improved description of electrostatics in classical force fields
     for small molecules

⇒ not a full MLP, since only the electrostatic component 
     is constructed using ML

Main methods: Kriging and Neural Networks

22



(c) Prof. Dr. Jörg Behler 2024 12

Jörg Behler Grenoble 2024

Third-Generation Neural Network Potentials: Method

N. Artrith, T. Morawietz and J. Behler, Phys. Rev. B 83 (2011) 153101.

RA1

RAN

RB1

RBM

GA1

GAN

GB1

GBM

EA1

EAN

E
E

B
1

short

EBM

RA1

RAN

RB1

RBM

GA1

GAN

GB1

GBM

QA1

QAN

Q
E

B
1

elec

Etotal QBM

Cartesian
Coord.

Atom-Centered
Symmetry
Functions

Atomic
Charge NNs

Atomic
Charges

Cartesian
Coord.

Atom-Centered
Symmetry
Functions

Atomic
Energy NNs

Atomic
Energies

Short-Range Part Long-Range Part

T. Morawietz and J. Behler, J. Chem. Phys. 136 (2012) 064103.

local atomic energies local atomic charges

Short-Range Part: Long-Range Part:

electrostatics
(and vdW)

Etotal = Eshort + Eelec

local bonding
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Machine Learning Potentials

1995 2000 2005 2010 2015 2020

N. Artrith, T. Morawietz and J. Behler, Phys. Rev. B 83 (2011) 153101.

Zinc Oxide Surface

First-generation MLPs

Second-generation MLPs

Third-generation MLPs

Examples:

T. Morawietz and J. Behler, J. Chem. Phys. 136 (2012) 064103.

O. T. Unke and M. Meuwly, J. Chem. Theory Comput. 15 (2019) 3678.
K Yao et al., Chem. Sci. 9 (2018) 2261.

24
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Fourth-Generation
Machine Learning Potentials:

Global Charge Distribution

+-H
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Limitations of Local Machine Learning Potentials

T. W. Ko, J. A. Finkler, S. Goedecker, J. Behler, Nature Commun. 12 (2021) 398.

Effect of distance structural changes in molecular systems:

functional group

DFT Hirshfeld charges

⇒ different local properties for the same 
     local geometry
⇒ contradictory training data

Example 1:
a)

b) X = OH X = NO2

X = O X = NH3
e) - +

c)

e)

0.06

0.03

-0.03

-0.06

0.010

0.005

-0.005

-0.010

ΔQ / e

ΔQ / e

Example 2:

a)

b) X = OH X = NO2

X = O X = NH3
e) - +

c)

e)

0.06

0.03

-0.03

-0.06

0.010

0.005

-0.005

-0.010

ΔQ / e

ΔQ / e

⇒ charge transfer determines reactivity
     (e.g. mesomeric effect)

C7H7OX anthracene

26
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CENT – Charge Equilibration Neural Network Technique

⇒ global electronic structure included (non-local charge transfer)

S. A. Ghasemi, A. Hofstetter, S. Saha, S. Goedecker, Phys. Rev. B 92 (2015) 045131.

⇒ applications: systems with primarily ionic bonding

hardnesselectronegativities Coulomb energy
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Fourth-Generation Neural Network Potentials: Method

T. W. Ko, J. A. Finkler, S. Goedecker, J. Behler, Nature Commun. 12 (2021) 398.
T. W. Ko, J. A. Finkler, S. Goedecker, J. Behler, Acc. Chem. Res. 54 (2021) 808.

atomic energies
⇒ local bonding

Goal: Combination of the advantages of CENT and HDNNPs

2G-HDNNP

global charge distribution
⇒ electrostatics

CENT

atomic energies + global charges 
⇒ local bonding + electrostatics

4G-HDNNP

Etotal = Eshort + Eelec

additional atomic descriptor:
atomic charge

modified training:
atomic charge

28
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Fourth-Generation Neural Network Potentials: Method

T. W. Ko, J. A. Finkler, S. Goedecker, J. Behler, Nature Commun. 12 (2021) 398.
T. W. Ko, J. A. Finkler, S. Goedecker, J. Behler, Acc. Chem. Res. 54 (2021) 808.

atomic energies
⇒ local bonding

Goal: Combination of the advantages of CENT and HDNNPs

2G-HDNNP

global charge distribution
⇒ electrostatics

CENT

atomic energies + global charges 
⇒ local bonding + electrostatics

4G-HDNNP

Etotal = Eshort + Eelec

additional atomic descriptor:
atomic charge

modified training:
atomic charge

Advantages:

• applicable to all types of bonding and systems
   (ionic, covalent, metallic, ...)

• long-range electrostatic interactions
   (flexible charges)

• description of non-local charge transfer

• applicable to multiple global charge states
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Fourth-Generation Neural Network Potentials: Method

RA1

RAN

RB1

RBM

GA1

GAN

GB1

GBM

EA1

EAN

E

E

B
1

short

EBM

RA1

RAN

RB1

RBM

GA1

GAN

GB1

GBM

QA1

QAN

Q

E

B
1

elec

Etotal

QBM

Cartesian
Coordinates

Atom-Centered
Symmetry
Functions

Atomic
Electronegativity

NNs
Atomic
Charges

χ A
1

A
N

B
1

B
M

Atomic
Electronegativity

Cartesian
Coordinates

Atom-Centered
Symmetry
Functions

Short-Range
Atomic

Energy NNs
Atomic
Energies

Short-Range Part

C
ha
rg
e
E
qu
ili
br
at
io
n

Non-Local Long-Range Part

χ

χ

χ

Etotal = Eshort + Eelec

T. W. Ko, J. A. Finkler, S. Goedecker, J. Behler, Nature Commun. 12 (2021) 398.
T. W. Ko, J. A. Finkler, S. Goedecker, J. Behler, Acc. Chem. Res. 54 (2021) 808.

local atomic energieslocal atomic 
electronegativities

⇒ global electronic structure included (non-local charge transfer)
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Fourth-Generation Neural Network Potentials: Examples

Test Case: Organic Molecules

1 12

12
13

a)

d)

1 11

c)

-0.1

+0.2

charges

-0.1

+0.2

charges

-0.1

+0.2

charges

unscaled charges:

scaled charges:

3G-HDNNP

4G-HDNNP:

DFT:b)

C10H2 C10H3
+

3G-HDNNP: scaled charges

DFT:

Root Mean Squared Errors

Method
Q 
(e)

E
(meV/
atom)

F
(eV/Å)

2G
train --- 1.6 0.131

test --- 1.6 0.130

3G
(sc.)

train 0.027 3.2 0.653

test 0.027 3.2 0.658

3G
(unsc.)

train 0.020 2.0 0.230

test 0.020 2.0 0.231

4G
train 0.006 1.1 0.078

test 0.007 1.2 0.078

Root Mean Squared Errors

Method
Q 
(e)

E
(meV/
atom)

F
(eV/Å)

2G
train --- 1.6 0.131

test --- 1.6 0.130

3G
(sc.)

train 0.027 3.2 0.653

test 0.027 3.2 0.658

3G
(unsc.)

train 0.020 2.0 0.230

test 0.020 2.0 0.231

4G
train 0.006 1.1 0.078

test 0.007 1.2 0.078

3G-HDNNP
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Machine Learning Potentials:
Where are we now?

Physics

Machine Learning

32
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Machine Learning Potentials

Challenge: How to measure the accuracy?

To date strong focus on E and F RMSEs:

But we need to know:

“the lower the better..."

• accuracy for unknown (relevant) structures
• stability in simulations
• are the trajectories correct

We need to check the right properties
⇒ a lot of effort, requires physical knowledge about the system

What is our benchmark? What is the truth?

•  Theory? Experiment? 

Coupled cluster calculations for large systems are impossible!
⇒ Often we do not know the truth

Good news: In DFT we have accepted this dilemma and it works!

33
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Machine Learning Potentials

What to do?

• The MLP must have a low RMSE for E and F

⇒ large remaining errors indicate problems (data, descriptor, physics...)

• Molecular dynamics must be long-term stable

But: long-term stability is no proof for the right physics (“Seeing is believing”?)

• Understand the physics of the system before training a potential

⇒ check the critical properties

“Well, you can run it...”

Mandatory but not a sufficient criterion

Validation of MLPs is become a main task

Comparison to experiment is often difficult

34
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Example:
Multiple Charge States

35
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The Fe2+/Fe3+ redox system in water

FeCl2 in water FeCl3 in water

• A local second-generation MLP must fail for this combined system

Expectation:

• A global fourth-generation MLP should work for this system

How can we investigate/validate this?

36
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The Fe2+/Fe3+ redox system in water

Construction of 6 HDNNPs

only FeCl2 in waterHDNNP Dataset E RMSE 
(meV/atom)

F RMSE
(eV/Å)

Q RMSE
(me)

2G(Fe2+) FeCl2/water 0.203 (0.213) 0.032 (0.032) ---

2G(Fe3+) FeCl3/water 0.232 (0.245) 0.037 (0.037) ---

2G(Fe2+/Fe3+) all 0.262 (0.271) 0.034 (0.035) ---

4G(Fe2+) FeCl2/water 0.203 (0.258) 0.031(0.036) 2.896 (2.896)

4G(Fe3+) FeCl3/water 0.237 (0.258) 0.036 (0.036) 3.130 (3.124)

4G(Fe2+/Fe3+) all 0.258 (0.273) 0.033 (0.033) 3.105 (3.108)

⇒ no significant difference, all very accurate (?)
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The Fe2+/Fe3+ redox system in water

What about outliers? Force correlation plots

4G(Fe2+) 4G(Fe3+) 4G(Fe2+/Fe3+)

2G(Fe2+) 2G(Fe3+) 2G(Fe2+/Fe3+)

38
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The Fe2+/Fe3+ redox system in water

4G-HDNNP Charge Correlation

4G(Fe2+) 4G(Fe3+) 4G(Fe2+/Fe3+)

⇒ Charges of both oxidation states are well represented

39

Jörg Behler Grenoble 2024

⇒ All trajectories are stable

The Fe2+/Fe3+ redox system in water

Fe-O Radial Distribution Functions:

Test 1: HDNNPs trained only to FeCl2 OR FeCl3 (15 Å box)

2G-HDNNP 4G-HDNNP

⇒ For separate datasets all HDNNPs work fine

40
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The Fe2+/Fe3+ redox system in water

Fe-O Radial Distribution Functions:

Test 2: HDNNPs trained to FeCl2 AND FeCl3 (15 Å box)

⇒ For combined datasets all HDNNPs SEEM to work fine
⇒ All trajectories are stable

2G-HDNNP 4G-HDNNP
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The Fe2+/Fe3+ redox system in water

Fe-O Radial Distribution Functions:

Test 3: HDNNPs trained to FeCl2 AND FeCl3 (30 Å box)

⇒ 2G-HDNNPs fail, 4G-HDNNPs are correct

2G-HDNNP 4G-HDNNP

42
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The Fe2+/Fe3+ redox system in water

Fe-O Radial Distribution Functions:

Test 4: HDNNPs trained to FeCl2 AND FeCl3 – Addition of Cl atom

⇒ 2G-HDNNPs fail, 4G-HDNNPs are correct

correct Fe3+ peak

wrong Fe2+ peak

Initial structure:
FeCl2 in water

Newly equilibrated system:

new Cl atom
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The Fe2+/Fe3+ redox system in water

Extrapolation Test: Electron Transfer Reaction

Test: Fe2Cl5 in a large box of water

⇒ 4G-HDNNP can predict electron transfer and charge conservation

44
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Conclusions

45
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Conclusions

Reporting RMSEs is not enough Stability in simulations is essential⇒

ML not good for extrapolation ⇒ Range of validity is essential information

Reference methods are important ⇒ MLP error is smaller than DFT error

Physics remains important ⇒ Right model for the system

Real applications are important We must go beyond model toy systems⇒

⇒ Using Machine Learning Potentials requires physical understanding and validation

⇒ There is still a lot of room for further methodical developments
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