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Goal:
Atomic-level understanding of complex systems in chemistry and materials science

= Predictive computer simulations with first-principles quality
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Energy

global and local minima

Reactions
barriers / transition states
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Central Role:
Potential Energy Surface

Vibrations

Forces
dynamics, free energies properties, analysis
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= The accuracy of the obtained results depends on the quality of the PES
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Definition of Machine Learning Potentials 3 E

[ There is no universally accepted definition of machine learning potentials )

Challenge: The construction essentially all atomistic potentials involves
fitting/parameter optimization.

= Where is the border between fitted potentials and MLPs?

[ A pragmatic definition of Machine Learning Potentials )

* A machine learning potential uses a flexible machine learning method to
represent the potential energy surface (total energy and its analytic derivatives)
as a function of the atomic coordinates.

principle no physical functional form needed

e learning potential is constructed using a consistent set of reference
re calculations.

= No “artificial intelligence”, just brute force fitting (?)

Jorg Behler Grenoble 2024

The Cambrian Explosion of Machine Learning Potentials M

Advances in
Machine Learning

Modern
Computer
Hardware
(GPUs)

Advances in
Descriptors

Modern Machine
Learning Potentials

" Substantial

Electronic Structure
Data Since = 2005

(CPU, RAM, HDD)

Incorporation
of Physics

Open Source
Libraries
(TensorFlow,
PyTorch)
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The Cambrian Explosion of Machine Learning Potentials M
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Machine Learning Potentials M

How to get an overview about the huge amount of papers?

We need a classification scheme for machine learning potentials
What are the criteria?

= N RN

T Physics? ML Method?J
Applicability? J

Descriptors? ]

= There is no unique way
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First-Generation
Machine Learning Potentials
1995 - 2007

7
Machine Learning Potentials M
Y
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First-Generation MLPs

* about 30 papers (1995 — 2007) from about 10 groups

¢ all methods in the first decade are based on neural networks

Examples: Focus:

T.B. Blank, S.D. Brown, AW. Calhoun, and D.J. Doren, J. Chem. Phys. 103 (1995) 4129. Training

H. Gassner, M. Probst, A. Lauenstein, K. Hermansson, J. Phys. Chem. A 102 (1998) 4596. Symmetry

S. Lorenz, A. GroR, M. Scheffler, Chem. Phys. Lett. 395 (2004) 210. Surfaces
Spectroscopy

S. Manzhos, T. Carrington, Jr., J. Chem. Phys. 125 (2006) 194105.

1. Behler, S. Lorenz, K. Reuter, J. Chem. Phys. 127 (2007) 014705. Surface Symmetry

( = Basic ideas and key concepts are well established j
-/
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Machine Learning Potentials E
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First-Generation MLPs

Limitation: Applicable to low-dimensional systems only

Input  Hidden Hidden Output Cha"enges:

Layer Layer1 Layer2 Layer
¢ limited number of dimensions (up to ~ 12)

e permutation symmetry of the system not included
(change in order of atoms changes the energy)

¢ energy depends on rotation and translation

e potential is valid only for a given system size
" BiasNode (number of atoms)

= Another approach is required for high-dimensional systems

Jorg Behler Grenoble 2024

Second-Generation
Machine Learning Potentials:
Locality
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High-Dimensional Neural Network Potentials i E

s
[ 3 Steps: ] [ Structure for a binary system AyBy J

1. Total energy is the sum of atomic energies _ Atom-Centered ! !
Cartesian Symmetry Atomic Atomic
Coordinates  Finctions Energy NNs Energies

E-= EE

1
2. Atomic energies depend on local environments
= cutoff radius

Pe A4
Voo

3. Description of local atomic environments by ‘_>‘_>._>
many-body atom-centered symmetry functions
= structural fingerprints f

(invariances: rotation, translation, permutation) local atomic energies

J. Behler, M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401.

J. Behler, J. Chem. Phys. 134 (2011) 074106. = applicable to thousands of atoms
J. Behler, Angew. Chem. Int. Ed. 56 (2017) 12828.

J
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Second-Generation Machine Learning Potentials i M
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First-Generation MLPs

Second-Generation MLPs

\ 4

Condensed Systems
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Second-Generation Machine Learning Potentials _

/1995 2000 2005 2010 2015 2020 \
: : | ; B E—
Fitst-Generation MLPs !
. Second-Generation MLPs
.......... R R N
20 \ K
High-Dimens . A 20 2 - N
Network P Gaussian Ap Spectral 201,
Phys. Rev. Lett. 9§ Rl Analysis Sloment 2019:
ye T e Phys. Rev. Lett. 10 Poten| Atomic Cluster Expansion
N“——————1 J. Comp. Phys.
Multisc. Mod. Sim|
| Phys. Rev. B9 (2019) 014104
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Second-Generation Machine Learning Potentials
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Fitst-Generation MLPs

Secon eneration MLPs
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And many more ...

= Dominant type of machine learning potential in simulations

Phys. Rev. B 99 (2019) 014104
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Second-Generation Machine Learning Potentials E

/1995 2000 2005 2010 2015 2020 N
1 1 1 1 1 1

First-Generation MLPs

Second-Generation MLPs

[ Limitation: Truncation of the interactions at the cutoff radius J

Jorg Behler Grenoble 2024

Hessian-based Locality Test M

4 - - - )
( A Hessian-Based Analytic Locality Test )

Challenge: Atomic forces depend on the entire environment
o different neighbors interact differently

= distance and type of bonding are important

= influence of individual neighbors is of interest

o forces are very small or even zero in symmetric environments
= forces are not a good measure for interaction strength

« force convergence of central atom measures only total interaction
= forces can cancel each other also in non-symmetric environments

Solution:

. O*F of 0
Hessian: H, p, = 94.0B; = - 6;5 =— afg; with «, ﬁ = {:(;, Y, Z}

= information about dependence of an atomic force on each atom in the system

= spatial cutoff can be quantified!

M. Herbold and J. Behler, J. Chem. Phys. 156 (2022) 114106. /

Jorg Behler Grenoble 2024
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Hessian-based Locality Test M

4 N\
0’FE ofp Ofa
DFT Hessian: H = = _ E— _ « with a. B={72.v.2
AePe T 9A,0B;  0A, 0B A=Ay,
Hessian: (3N x 3N) matrix Dependence of atomic force
B 1 2 3 2 vector on atomic position of a
A8 xiviz|xiviz| xiyiz neighbor: (3x3) matrix
1y ( = inconvenient, scalar property needed
: — = Hessian submatrix norm
Basll= [ > > B,
X a=x,y,z f=z,y,2
3y
x Dependence of force on each individual
4 atom in the system can be quantified

M. Herbold and J. Behler, J. Chem. Phys. 156 (2022) 114106. /

Grenoble 2024

Jorg Behler

17
Hessian-based Locality Test M
4 1D Model Systems )
Alkane Alkene Polyaromatic  Localized aromatic
z/A
20 —
[lhasl|/
o —2
eVA 15 -
2100 —
10—
1 10 —+
0.1
0.01
5 ——
0
] ) oLl
N >
atom of interest: - contribution of each atom in the system can be quantified
terminal carbon - no cancellation of contributions possible
M. Herbold and J. Behler, J. Chem. Phys. 156 (2022) 114106. /
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Second-Generation Machine Learning Potentials E

[ 2G MLPs are the main production methods for MLP-driven simulations ]

There are now two classes:

Predefined Descriptors Message Passing Neural Networks
(HDNNP, SOAP, DeePMD,...) (DTNN, SchNet, MACE, ...)
¢ simple = fast e jterative extension of environment
¢ most applications so far ¢ learnable features
¢ more difficult for many elements = more demanding

= for a given system the accuracy is very similar

Jorg Behler Grenoble 2024
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Second-Generation Machine Learning Potentials M

If the training of the MLP for a system does not work, there is a physical reason
= must be understood

1) Data is not accurate enough

2) Descriptors are insufficient
= properties of different structures are averaged = large errors
3) Physics is missing
The cutoff used in second-generation MLPs is an approximation!
= Convergence tests are needed

P g »< A<l Locality tests:
Yo tritee o .
¢ < O Statistical analysis:

»

< : ':‘ V. L. Deringer and G. Csényi, Phys. Rev. B 95 (2017) 094203.
s < < .

» % S Hessian-based:
2 ] <

rétedd &
ad A d md M. Herbold and J. Behler, J. Chem. Phys. 156 (2022) 114106.

= For some systems, long-range interactions may be important!
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Third-Generation
Machine Learning Potentials:

Long-Range Interactions

What about electrostatics?

Learning Electrostatic Multipoles Y M

4 )

Goal:

Use ML to represent flexible electrostatic charges and multipoles
as a function of the molecular structure.

= improved description of electrostatics in classical force fields
for small molecules

Main methods: Kriging and Neural Networks

= not a full MLP, since only the electrostatic component
is constructed using ML

S. Houlding, S. Y. Liem and P. L. A. Popelier, Int. J. Quant. Chem. 107 (2007) 2817. /

Jorg Behler Grenoble 2024
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Third-Generation Neural Network Potentials: Method\ E

/ Short-Range Part: Long-Range Part: \
— Etotal = Eshort + Eelec
ried | [
local bonding g :2 g electrostatics : :2 :2
3 [ (and vdW) 3o el
& 26 28| 28| 28 28
Atom-Centered N N " Atom-Centered N
o gymmety ¢ Bns Encrges Oibee  Crorgatine  gymmety CELeEn

@0

local atomic energies local atomic charges /

Phys. Rev. B 83 (2011) 153101.
36 (2012) 064103.
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Machine Learning Potentials M
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First-generation MLPs

Second-generation MLPs

Zinc Oxide Surface

Third-generation MLPs

Examples:

N. Artrith, T. Morawietz and J. Behler, Phys. Rev. B 83 (2011) 153101.

T. Morawietz and J. Behler, J. Chem. Phys. 136 (2012) 064103.

K Yao et al., Chem. Sci. 9 (2018) 2261.

0. T. Unke and M. Meuwly, J. Chem. Theory Comput. 15 (2019) 3678. /
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Fourth-Generation
Machine Learning Potentials:
Global Charge Distribution

Limitations of Local Machine Learning Potentials : M

Jorg Behler
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( Effect of distance structural changes in molecular systems: )
4 N\ [ N\
Example 1: C;H;0X Example 2: anthracene
functional group x
\ H H H H
NN,
H H H X=0OH X=NO, AQ /e
-~ Pt 0.010
X=H, \5 Vo2 X=HO \ 04 0.005
A, J "A‘ﬁ'«‘.’b i & t\ *#
N b IS 4 0010
5 ,l g , A“ L 0.06
S - 0.03
DFT Hirshfeld charges Uo%
-0.06
= different local properties for the same
local geometry = charge transfer determines reactivity
= contradictory training data (e.g. mesomeric effect)
A\ J
Nature Commun. 12 (2021) 398.

Grenoble 2024
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CENT - Charge Equilibration Neural Network Techniqu e E

A, ’
atom 1 1 p(R) p(R ) )
Etot({Ql’}) = Z (Eio +'¥1Q't + _]il'Q'iz) + - f ﬁdR dR
i=1 /‘ 2 \ 2 R-R
electronegativities hardness Coulomb energy

Atom-Centered  Atomic

Atomic Atomic
Symmetry - Elecronegativity g1 ironegativity Charges

~-9-0-F

e 8L 8 &

NN WA

= global electronic structure included (non-local charge transfer)

Cartesian
Coordinates

Charge Equilibration

= applications: systems with primarily ionic bonding /

decker, Phys. Rev. B 92 (2015) 045131.

Jorg Behler Grenoble 2024
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Fourth-Generation Neural Network Potentials: Method M
Goal: Combination of the advantages of CENT and HDNNPs
global charge distribution atomic energies
= electrostatics = local bonding

modified training: additional atomic descriptor:
atomic charge atomic charge

Tl B Ao s

atomic energies + global charges
= local bonding + electrostatics

Behler, Nature Commun. 12 (2021) 398.
er, Acc. Chem. Res. 54 (2021) 808.

Jorg Behler Grenoble 2024
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Fourth-Generation Neural Network Potentials: Method

dvantages of CEN HDNNPs

Advantages:
e applicable to all types of bonding and systems
(ionic, covalent, metallic, ...)

¢ long-range electrostatic interactions criptor:
(flexible charges)

e description of non-local charge transfer

e applicable to multiple global charge states

= local bonding + electrostatics

L atomic energies + global charges J

Behler, Nature Commun. 12 (2021) 398.
er, Acc. Chem. Res. 54 (2021) 808.

Jorg Behler Grenoble 2024
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Fourth-Generation Neural Network Potentials: Method

/ Non-Local Long-Range Part Short-Range Part \
Cartesian A'c's"‘y"?nf”:fy'edamfonegamy Ator Atomic Atomic Sh°" Ra"ge Atom- ce"'fy'e" Cartesian
Coordinates  Fynctions Electronegahwty Charges Energies E"e, NN PomenerY Coordinates

O—*O—*.*“

o ae

local atomic
electronegativities

Charge Equilibration

= global electronic structure included (non-local charge transfew

{ Etotal = Eshort + Eelec

Behler, Nature Commun. 12 (2021) 398.
er, Acc. Chem. Res. 54 (2021) 808.
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Fourth-Generation Neural Network Potentials: Exampl,

~N
Test Case: Organic Molecules Root Mean Squared Errors
+
- ClOHZ - C10H3 E F
,/ \\ /’ \\ ’ (meV/ | (eV/A)
|  -S0o00000000° | Mi: atom)
\ / \ 1
AT S N A ii train — 16 0.131
DFT: g 26
®300000000  «3080000C8{ A
n i
o 3G train 0.027 3.2 0.653
-0.1 test 0.027 3.2 0.658
3G-HDNNP .
830000 0080 [ 000008 g train 0.006 1.1 0.078
Ia 4G
test 0.007 1.2 0.078
+0.2
-0.1
4G-HDNNP: l%
90000000000  «3O000000F 3

Jorg Behler Grenoble 2024
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Machine Learning Potentials 1 E

[ Challenge: How to measure the accuracy? ]

To date strong focus on £ and F RMSEs: “the lower the better..."

But we need to know:
¢ accuracy for unknown (relevant) structures
o stability in simulations
e are the trajectories correct
We need to check the right properties
= a lot of effort, requires physical knowledge about the system

hat is our benchmark? What is the truth?

ry? Experiment?
er calculations for large systems are impossible!
ow the truth

Good news: In DFT we have accepted this dilemma and it works!

Jorg Behler Grenoble 2024
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o
[ What to do? ]

® The MLP must have a low RMSE for E and F
Mandatory but not a sufficient criterion
= large remaining errors indicate problems (data, descriptor, physics...)
® Molecular dynamics must be long-term stable
But: long-term stability is no proof for the right physics (“Seeing is believing”?)

“Well, you can run it...”

e Understand the physics of the system before training a potential

eck the critical properties

on to experiment is often difficult

Validation of MLPs is become a main task

Jorg Behler Grenoble 2024
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The Fe?*/Fe3* redox system in water

Example:
Multiple Charge States

FeCl, in water )

()

\_

J

FeCl; in water

o

-

Jorg Behler
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Expectation:

How can we investigate/validate this?

ocal second-generation MLP must fail for this combined system

ourth-generation MLP should work for this system

Grenoble 2024
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The Fe?*/Fe3* redox system in water »

Construction of 6 HDNNPs

2G(Fe?)
2G(Fe3")
2G(Fe?+/Fe®)
4G(Fe?)
4G(Fe)
4G(Fe?*/Fe?*)

FeCly/water
FeCls/water
|

FeCl,/water

a

FeCls/water
|

a

0.203 (0.213)
0.232 (0.245)
0.262 (0.271)
0.203 (0.258)
0.237 (0.258)
0.258 (0.273)

0.032 (0.032)
0.037 (0.037)
0.034 (0.035)
0.031(0.036)
0.036 (0.036)
0.033 (0.033)

Dataset E RMSE F RMSE
(meV/atom) (eV/A)

2.896 (2.896)
3.130 (3.124)
3.105 (3.108)

Jorg Behler
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The Fe?*/Fe3* redox system in water »

= no significant difference, all very accurate (?)

Grenoble 2024

Vs

What about outliers? Force correlation plots

J\__J

\
Ve

2G(Fe*) 2G(Fe?) 2G(Fe?*/Fe?*)
N b) [ e 9, s
P i /
ST T NNCON R T NNCN EEa——y 5
4G(Fe2+) 4G(Fe3+) 4G(Fe2+/Fe3")
raning €) [~ tamng ) [ oo

Jorg Behler
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Cw
021 . Test 3/

Fu (Ha/Bohr)

. Test

G2 o1 oo o1 oz
Fret (Ha/Bohr)

o1 oz

51 oo o1
Fret (Ha/Bohr)

EFY)
Fret (Ha/Bohr)
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The Fe?*/Fe3* redox system in water

[ 4G-HDNNP Charge Correlation J
( N
4G(Fe?*) 4G(Fe?) 4G(Fe?*/Fe?)
a) by | o | A
;, - 4
;g 0.0 é 0.0 v ;§ 0.0 '
y // ‘///
Cra— R N L O
J

= Charges of both oxidation states are well represented

Jorg Behler
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The Fe?*/Fe3* redox system in water

[ Fe-O Radial Distribution Functions:

Test 1: HDNNPs trained only to FeCl, OR FeCl, (15 A box)

2G-HDNNP 4G-HDNNP
a
a) 50 —— FeCl2G(Fe?*) ) 201 — FeCly/4G(Fe?")
— FeCl32G(Fe3*) —— FeCly/4G(Fe?*)
151
<
810
(o))
5.
P 5 By oo .
3 4 5 1 2 3 4 5
r(A) r(A)

= All trajectories are stable
= For separate datasets all HDNNPs work fine

Jorg Behler
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The Fe?*/Fe3* redox system in water : E

[ Fe-O Radial Distribution Functions:

2G-HDNNP

—— FeCl3/2G(Fe?* [Fe3*)

greo(r)

b) 20 — rectnarerrer) | ©) 20

Test 2: HDNNPs trained to FeCl, AND FeCl; (15 A box)

4G-HDNNP

—— FeCl,/4G(Fe?* [Fe3+)
—— FeCl3/4G(Fe2* [Fe3*)

= All trajectories are stable

= For combined datasets all HDNNPs SEEM to work fine

Jorg Behler
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The Fe?*/Fe3* redox system in water : M

[ Fe-O Radial Distribution Functions:

2G-HDNNP
d) 20] —— FeCl,/2G(Fe?* [Fe3+) °)
—— FeCl3/2G(Fe?* [Fe3+)

15
< =
210 f <}
L s
o S

5 -

Test 3: HDNNPs trained to FeCl, AND FeCl, (30 A box)

4G-HDNNP

—— FeCl/4G(Fe?* [Fe3*)
—— FeCl3/4G(Fe?* [Fe3*)

r(A)

= 2G-HDNNPs fail, 4G-HDNNPs are correct

Jorg Behler
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The Fe?*/Fe3* redox system in water E

( Fe-O Radial Distribution Functions: J

Test 4: HDNNPs trained to FeCl, AND FeCl; — Addition of Cl atom

Initial structure:

. Newly equilibrated system:
FeCl, in water

—— FeCl3/4G(Fe?* [Fe3+)
—— FeCl3/2G(Fe?* [Fe3*)

T~ correct Fe3* peak

_— Wwrong Fe?* peak

O

®

Grenoble 2024
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The Fe?*/Fe3* redox system in water M
[ Extrapolation Test: Electron Transfer Reaction J

Test: Fe,Cl; in a large box of water

0.65

— Fe #1
0.60 — Fe #2

0.55

0.50
L 0.45
7
o.4oJ

0.35

0.30

0.25 T T T T
0 5 10 15 20 25
t(ps)

= 4G-HDNNP can predict electron transfer and charge conservation

Jorg Behler Grenoble 2024
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Conclusions

Right model for the system

We must go beyond model toy systems

Range of validity is essential information

45
Conclusions
-
Physics remains important =
Real applications are important =
\.
4
ML not good for extrapolation =
Reference methods are important =
\

MLP error is smaller than DFT error

Reporting RMSEs is not enough =

Stability in simulations is essential

= Using Machine Learning Potentials requires physical understanding and validation

= There is still a lot of room for further methodical developments

Jorg Behler
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